These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 21044593)

  • 41. Role of glycolipids in lipid rafts: a view through atomistic molecular dynamics simulations with galactosylceramide.
    Hall A; Róg T; Karttunen M; Vattulainen I
    J Phys Chem B; 2010 Jun; 114(23):7797-807. PubMed ID: 20496924
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparison of the biophysical properties of racemic and d-erythro-N-acyl sphingomyelins.
    Ramstedt B; Slotte JP
    Biophys J; 1999 Sep; 77(3):1498-506. PubMed ID: 10465760
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts.
    Quinn PJ
    Langmuir; 2013 Jul; 29(30):9447-56. PubMed ID: 23863113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Counter-effects of Ethanol and Cholesterol on the Heterogeneous PSM-POPC Lipid Membrane: A Molecular Dynamics Simulation Study.
    Kumari P; Kumari M; Kashyap HK
    J Phys Chem B; 2019 Nov; 123(45):9616-9628. PubMed ID: 31625744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Palmitoyl ceramide promotes milk sphingomyelin gel phase domains formation and affects the mechanical properties of the fluid phase in milk-SM/DOPC supported membranes.
    Murthy AVR; Guyomarc'h F; Lopez C
    Biochim Biophys Acta Biomembr; 2018 Mar; 1860(3):635-644. PubMed ID: 29229528
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Hydrocarbon chains dominate coupling and phase coexistence in bilayers of natural phosphatidylcholines and sphingomyelins.
    Quinn PJ; Wolf C
    Biochim Biophys Acta; 2009 May; 1788(5):1126-37. PubMed ID: 19150608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of sphingomyelin headgroup size on molecular properties and interactions with cholesterol.
    Björkbom A; Róg T; Kaszuba K; Kurita M; Yamaguchi S; Lönnfors M; Nyholm TK; Vattulainen I; Katsumura S; Slotte JP
    Biophys J; 2010 Nov; 99(10):3300-8. PubMed ID: 21081078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC.
    Lopez C; Cheng K; Perez J
    Chem Phys Lipids; 2018 Sep; 215():46-55. PubMed ID: 30076798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Investigating the Structure of Multicomponent Gel-Phase Lipid Bilayers.
    Hartkamp R; Moore TC; Iacovella CR; Thompson MA; Bulsara PA; Moore DJ; McCabe C
    Biophys J; 2016 Aug; 111(4):813-823. PubMed ID: 27558724
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 2NH and 3OH are crucial structural requirements in sphingomyelin for sticholysin II binding and pore formation in bilayer membranes.
    Maula T; Isaksson YJ; García-Linares S; Niinivehmas S; Pentikäinen OT; Kurita M; Yamaguchi S; Yamamoto T; Katsumura S; Gavilanes JG; Martínez-del-Pozo A; Slotte JP
    Biochim Biophys Acta; 2013 May; 1828(5):1390-5. PubMed ID: 23376330
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sphingomyelin structure influences the lateral diffusion and raft formation in lipid bilayers.
    Filippov A; Orädd G; Lindblom G
    Biophys J; 2006 Mar; 90(6):2086-92. PubMed ID: 16387761
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Design and synthesis of sphingomyelin-cholesterol conjugates and their formation of ordered membranes.
    Matsumori N; Tanada N; Nozu K; Okazaki H; Oishi T; Murata M
    Chemistry; 2011 Jul; 17(31):8568-75. PubMed ID: 21728198
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and lipid interaction of N-palmitoylsphingomyelin in bilayer membranes as revealed by 2H-NMR spectroscopy.
    Mehnert T; Jacob K; Bittman R; Beyer K
    Biophys J; 2006 Feb; 90(3):939-46. PubMed ID: 16284259
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dehydration of Lipid Membranes Drives Redistribution of Cholesterol Between Lateral Domains.
    Orlikowska-Rzeznik H; Krok E; Domanska M; Setny P; Lągowska A; Chattopadhyay M; Piatkowski L
    J Phys Chem Lett; 2024 Apr; 15(16):4515-4522. PubMed ID: 38634827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Partitioning of ethanol in multi-component membranes: effects on membrane structure.
    Polley A; Vemparala S
    Chem Phys Lipids; 2013 Jan; 166():1-11. PubMed ID: 23220048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular-dynamics simulation of a ceramide bilayer.
    Pandit SA; Scott HL
    J Chem Phys; 2006 Jan; 124(1):14708. PubMed ID: 16409052
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Displacement of sterols from sterol/sphingomyelin domains in fluid bilayer membranes by competing molecules.
    Alanko SM; Halling KK; Maunula S; Slotte JP; Ramstedt B
    Biochim Biophys Acta; 2005 Sep; 1715(2):111-21. PubMed ID: 16126159
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cis and trans unsaturated phosphatidylcholine bilayers: A molecular dynamics simulation study.
    Kulig W; Pasenkiewicz-Gierula M; Róg T
    Chem Phys Lipids; 2016 Feb; 195():12-20. PubMed ID: 26187855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol.
    Zhang Z; Bhide SY; Berkowitz ML
    J Phys Chem B; 2007 Nov; 111(44):12888-97. PubMed ID: 17941659
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.