These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21044593)

  • 61. Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol.
    Zhang Z; Bhide SY; Berkowitz ML
    J Phys Chem B; 2007 Nov; 111(44):12888-97. PubMed ID: 17941659
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A weight averaged approach for predicting amide vibrational bands of a sphingomyelin bilayer.
    Yagi K; Li PC; Shirota K; Kobayashi T; Sugita Y
    Phys Chem Chem Phys; 2015 Nov; 17(43):29113-23. PubMed ID: 26460816
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine.
    Aittoniemi J; Niemelä PS; Hyvönen MT; Karttunen M; Vattulainen I
    Biophys J; 2007 Feb; 92(4):1125-37. PubMed ID: 17114220
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Detection of Sphingomyelin Clusters by Raman Spectroscopy.
    Shirota K; Yagi K; Inaba T; Li PC; Murata M; Sugita Y; Kobayashi T
    Biophys J; 2016 Sep; 111(5):999-1007. PubMed ID: 27602727
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study.
    Wong-Ekkabut J; Xu Z; Triampo W; Tang IM; Tieleman DP; Monticelli L
    Biophys J; 2007 Dec; 93(12):4225-36. PubMed ID: 17766354
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Lateral diffusion in equimolar mixtures of natural sphingomyelins with dioleoylphosphatidylcholine.
    Filippov A; Munavirov B; Gröbner G; Rudakova M
    Magn Reson Imaging; 2012 Apr; 30(3):413-21. PubMed ID: 22260936
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Computation of mixed phosphatidylcholine-cholesterol bilayer structures by energy minimization.
    Vanderkooi G
    Biophys J; 1994 May; 66(5):1457-68. PubMed ID: 8061195
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structure and dynamic properties of diunsaturated 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine lipid bilayer from molecular dynamics simulation.
    Hyvönen MT; Rantala TT; Ala-Korpela M
    Biophys J; 1997 Dec; 73(6):2907-23. PubMed ID: 9414205
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.
    Pinto SN; Fernandes F; Fedorov A; Futerman AH; Silva LC; Prieto M
    Biochim Biophys Acta; 2013 Sep; 1828(9):2099-110. PubMed ID: 23702462
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular Dynamics Simulations of Ceramide and Ceramide-Phosphatidylcholine Bilayers.
    Wang E; Klauda JB
    J Phys Chem B; 2017 Nov; 121(43):10091-10104. PubMed ID: 29017324
    [TBL] [Abstract][Full Text] [Related]  

  • 71. DMSO induced dehydration of heterogeneous lipid bilayers and its impact on their structures.
    Kumari P; Kashyap HK
    J Chem Phys; 2019 Dec; 151(21):215103. PubMed ID: 31822068
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Infrared study of the structure and composition of rabbit lens membranes: a comparative analysis of the lipids of the nucleus, cortex and epithelium.
    Lamba OP; Borchman D; Garner WH
    Exp Eye Res; 1993 Jul; 57(1):1-12. PubMed ID: 8405165
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular dynamics study on the stabilization of dehydrated lipid bilayers with glucose and trehalose.
    Leekumjorn S; Sum AK
    J Phys Chem B; 2008 Aug; 112(34):10732-40. PubMed ID: 18680361
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.
    Saito H; Shinoda W
    J Phys Chem B; 2011 Dec; 115(51):15241-50. PubMed ID: 22081997
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Two Coexisting Membrane Structures Are Defined by Lateral and Transbilayer Interactions between Sphingomyelin and Cholesterol.
    Smith P; Quinn PJ; Lorenz CD
    Langmuir; 2020 Aug; 36(33):9786-9799. PubMed ID: 32701297
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Does fluoride disrupt hydrogen bond network in cationic lipid bilayer? Time-dependent fluorescence shift of Laurdan and molecular dynamics simulations.
    Pokorna S; Jurkiewicz P; Vazdar M; Cwiklik L; Jungwirth P; Hof M
    J Chem Phys; 2014 Dec; 141(22):22D516. PubMed ID: 25494787
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Thermodynamic and hydrogen-bonding analyses of the interaction between model lipid bilayers.
    Eun C; Berkowitz ML
    J Phys Chem B; 2010 Mar; 114(8):3013-9. PubMed ID: 20143884
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Distribution of pentachlorophenol in phospholipid bilayers: a molecular dynamics study.
    Mukhopadhyay P; Vogel HJ; Tieleman DP
    Biophys J; 2004 Jan; 86(1 Pt 1):337-45. PubMed ID: 14695275
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Sphingomyelin Stereoisomers Reveal That Homophilic Interactions Cause Nanodomain Formation.
    Yano Y; Hanashima S; Yasuda T; Tsuchikawa H; Matsumori N; Kinoshita M; Al Sazzad MA; Slotte JP; Murata M
    Biophys J; 2018 Oct; 115(8):1530-1540. PubMed ID: 30274830
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Orientation and Order of the Amide Group of Sphingomyelin in Bilayers Determined by Solid-State NMR.
    Matsumori N; Yamaguchi T; Maeta Y; Murata M
    Biophys J; 2015 Jun; 108(12):2816-24. PubMed ID: 26083921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.