These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21044646)

  • 1. Prediction of thermophilic proteins using feature selection technique.
    Lin H; Chen W
    J Microbiol Methods; 2011 Jan; 84(1):67-70. PubMed ID: 21044646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting thermophilic proteins through selecting amino acid and dipeptide composition features.
    Nakariyakul S; Liu ZP; Chen L
    Amino Acids; 2012 May; 42(5):1947-53. PubMed ID: 21547362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic environment is a key factor for the stability of thermophilic proteins.
    Gromiha MM; Pathak MC; Saraboji K; Ortlund EA; Gaucher EA
    Proteins; 2013 Apr; 81(4):715-21. PubMed ID: 23319168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LogitBoost classifier for discriminating thermophilic and mesophilic proteins.
    Zhang G; Fang B
    J Biotechnol; 2007 Jan; 127(3):417-24. PubMed ID: 17045354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Random forest for classification of thermophilic and psychrophilic proteins based on amino acid composition distribution].
    Zhang G; Fang B
    Sheng Wu Gong Cheng Xue Bao; 2008 Feb; 24(2):302-8. PubMed ID: 18464617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinformatics-driven, rational engineering of protein thermostability.
    Ditursi MK; Kwon SJ; Reeder PJ; Dordick JS
    Protein Eng Des Sel; 2006 Nov; 19(11):517-24. PubMed ID: 17003065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of protein homo-oligomer types by pseudo amino acid composition: Approached with an improved feature extraction and Naive Bayes Feature Fusion.
    Zhang SW; Pan Q; Zhang HC; Shao ZC; Shi JY
    Amino Acids; 2006 Jun; 30(4):461-8. PubMed ID: 16773245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of mesophilic and thermophilic proteins using machine learning algorithms.
    Gromiha MM; Suresh MX
    Proteins; 2008 Mar; 70(4):1274-9. PubMed ID: 17876820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using support vector machine to predict beta- and gamma-turns in proteins.
    Hu X; Li Q
    J Comput Chem; 2008 Sep; 29(12):1867-75. PubMed ID: 18432623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different packing of external residues can explain differences in the thermostability of proteins from thermophilic and mesophilic organisms.
    Glyakina AV; Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2007 Sep; 23(17):2231-8. PubMed ID: 17599925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate prediction of stability changes in protein mutants by combining machine learning with structure based computational mutagenesis.
    Masso M; Vaisman II
    Bioinformatics; 2008 Sep; 24(18):2002-9. PubMed ID: 18632749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective factors in thermostability of thermophilic proteins.
    Sadeghi M; Naderi-Manesh H; Zarrabi M; Ranjbar B
    Biophys Chem; 2006 Feb; 119(3):256-70. PubMed ID: 16253416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of protein mutant stability: analysis and optimization of statistical potentials and structural features reveal insights into prediction model development.
    Parthiban V; Gromiha MM; Abhinandan M; Schomburg D
    BMC Struct Biol; 2007 Aug; 7():54. PubMed ID: 17705837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins.
    Zhou XX; Wang YB; Pan YJ; Li WF
    Amino Acids; 2008 Jan; 34(1):25-33. PubMed ID: 17710363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrostatic basis for the stability of thermophilic proteins.
    Dominy BN; Minoux H; Brooks CL
    Proteins; 2004 Oct; 57(1):128-41. PubMed ID: 15326599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability.
    Wijma HJ; Floor RJ; Janssen DB
    Curr Opin Struct Biol; 2013 Aug; 23(4):588-94. PubMed ID: 23683520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition.
    Shi JY; Zhang SW; Pan Q; Cheng YM; Xie J
    Amino Acids; 2007 Jul; 33(1):69-74. PubMed ID: 17235454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in computational protein design.
    Pantazes RJ; Grisewood MJ; Maranas CD
    Curr Opin Struct Biol; 2011 Aug; 21(4):467-72. PubMed ID: 21600758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volsurf computational method applied to the prediction of stability of thermostable enzymes.
    Braiuca P; Buthe A; Ebert C; Linda P; Gardossi L
    Biotechnol J; 2007 Feb; 2(2):214-20. PubMed ID: 17203502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.