BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21044650)

  • 1. Non-covalent association of folate to lipoplexes: a promising strategy to improve gene delivery in the presence of serum.
    Duarte S; Faneca H; de Lima MC
    J Control Release; 2011 Feb; 149(3):264-72. PubMed ID: 21044650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folate-associated lipoplexes mediate efficient gene delivery and potent antitumoral activity in vitro and in vivo.
    Duarte S; Faneca H; Lima MC
    Int J Pharm; 2012 Feb; 423(2):365-77. PubMed ID: 22209825
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum-resistant lipoplexes in the presence of asialofetuin.
    Tros de Ilarduya C
    Methods Mol Biol; 2010; 605():425-34. PubMed ID: 20072898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved in vitro gene transfer mediated by fluorinated lipoplexes in the presence of a bile salt surfactant.
    Gaucheron J; Santaella C; Vierling P
    J Gene Med; 2001; 3(4):338-44. PubMed ID: 11529663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced hepatocyte-selective in vivo gene expression by stabilized galactosylated liposome/plasmid DNA complex using sodium chloride for complex formation.
    Fumoto S; Kawakami S; Ito Y; Shigeta K; Yamashita F; Hashida M
    Mol Ther; 2004 Oct; 10(4):719-29. PubMed ID: 15451456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting of plasmid DNA-lipoplexes to cells with molecules anchored via a metal chelator lipid.
    Herringson TP; Patlolla RR; Altin JG
    J Gene Med; 2009 Nov; 11(11):1048-63. PubMed ID: 19757485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of folate-PEG-grafted-hyperbranched-PEI for tumor-targeted gene delivery.
    Liang B; He ML; Xiao ZP; Li Y; Chan CY; Kung HF; Shuai XT; Peng Y
    Biochem Biophys Res Commun; 2008 Mar; 367(4):874-80. PubMed ID: 18201560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cationic liposomes for gene delivery.
    Simões S; Filipe A; Faneca H; Mano M; Penacho N; Düzgünes N; de Lima MP
    Expert Opin Drug Deliv; 2005 Mar; 2(2):237-54. PubMed ID: 16296751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyethylenimine of various molecular weights as adjuvant for transfection mediated by cationic liposomes.
    Penacho N; Simões S; de Lima MC
    Mol Membr Biol; 2009 May; 26(4):249-63. PubMed ID: 19280381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(cationic lipid)-mediated in vivo gene delivery to mouse liver.
    Liu L; Zern MA; Lizarzaburu ME; Nantz MH; Wu J
    Gene Ther; 2003 Jan; 10(2):180-7. PubMed ID: 12571647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient gene delivery by EGF-lipoplexes in vitro and in vivo.
    Buñuales M; Düzgüneş N; Zalba S; Garrido MJ; de Ilarduya CT
    Nanomedicine (Lond); 2011 Jan; 6(1):89-98. PubMed ID: 21182421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel serum-tolerant lipoplexes target the folate receptor efficiently.
    Gorle S; Ariatti M; Singh M
    Eur J Pharm Sci; 2014 Aug; 59():83-93. PubMed ID: 24769039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cationic liposome-DNA complexes as gene delivery vectors: Development and behaviour towards bone-like cells.
    Oliveira AC; Ferraz MP; Monteiro FJ; Simões S
    Acta Biomater; 2009 Jul; 5(6):2142-51. PubMed ID: 19332382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folate-targeted, cationic liposome-mediated gene transfer into disseminated peritoneal tumors.
    Reddy JA; Abburi C; Hofland H; Howard SJ; Vlahov I; Wils P; Leamon CP
    Gene Ther; 2002 Nov; 9(22):1542-50. PubMed ID: 12407426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene delivery by lipoplexes and polyplexes.
    Tros de Ilarduya C; Sun Y; Düzgüneş N
    Eur J Pharm Sci; 2010 Jun; 40(3):159-70. PubMed ID: 20359532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force microscopy imaging of DNA-cationic liposome complexes optimised for gene transfection into neuronal cells.
    Wangerek LA; Dahl HH; Senden TJ; Carlin JB; Jans DA; Dunstan DE; Ioannou PA; Williamson R; Forrest SM
    J Gene Med; 2001; 3(1):72-81. PubMed ID: 11269338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic nanomedicine: gene delivery by targeted lipoplexes.
    Düzgüneş N; de Ilarduya CT
    Methods Enzymol; 2012; 509():355-67. PubMed ID: 22568915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of transfection activity of lipoplexes by complexation with transferrin-bearing fusogenic polymer-modified liposomes.
    Sakaguchi N; Kojima C; Harada A; Koiwai K; Shimizu K; Emi N; Kono K
    Int J Pharm; 2006 Nov; 325(1-2):186-90. PubMed ID: 16844328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of size, lipid composition and bilayer fluidity of cationic liposomes on the transfection efficiency of nanolipoplexes.
    Ramezani M; Khoshhamdam M; Dehshahri A; Malaekeh-Nikouei B
    Colloids Surf B Biointerfaces; 2009 Aug; 72(1):1-5. PubMed ID: 19395245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulations which increase the size of lipoplexes prevent serum-associated inhibition of transfection.
    Turek J; Dubertret C; Jaslin G; Antonakis K; Scherman D; Pitard B
    J Gene Med; 2000; 2(1):32-40. PubMed ID: 10765503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.