BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21044685)

  • 1. Diffusion and light-dependent compartmentalization of transducin.
    Kerov V; Artemyev NO
    Mol Cell Neurosci; 2011 Jan; 46(1):340-6. PubMed ID: 21044685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of transducin with uncoordinated 119 protein (UNC119): implications for the model of transducin trafficking in rod photoreceptors.
    Gopalakrishna KN; Doddapuneni K; Boyd KK; Masuho I; Martemyanov KA; Artemyev NO
    J Biol Chem; 2011 Aug; 286(33):28954-28962. PubMed ID: 21712387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional comparison of rod and cone Gα(t) on the regulation of light sensitivity.
    Mao W; Miyagishima KJ; Yao Y; Soreghan B; Sampath AP; Chen J
    J Biol Chem; 2013 Feb; 288(8):5257-67. PubMed ID: 23288843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent.
    Muradov H; Boyd KK; Artemyev NO
    J Biol Chem; 2010 Dec; 285(51):39828-34. PubMed ID: 20940301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and subcellular distribution of UNC119a, a protein partner of transducin α subunit in rod photoreceptors.
    Sinha S; Majumder A; Belcastro M; Sokolov M; Artemyev NO
    Cell Signal; 2013 Jan; 25(1):341-8. PubMed ID: 23072788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphorylation of phosducin accelerates rod recovery from transducin translocation.
    Belcastro M; Song H; Sinha S; Song C; Mathers PH; Sokolov M
    Invest Ophthalmol Vis Sci; 2012 May; 53(6):3084-91. PubMed ID: 22491418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A functional rhodopsin-green fluorescent protein fusion protein localizes correctly in transgenic Xenopus laevis retinal rods and is expressed in a time-dependent pattern.
    Moritz OL; Tam BM; Papermaster DS; Nakayama T
    J Biol Chem; 2001 Jul; 276(30):28242-51. PubMed ID: 11350960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light threshold-controlled cone alpha-transducin translocation.
    Chen J; Wu M; Sezate SA; McGinnis JF
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3350-5. PubMed ID: 17591908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A role for cytoskeletal elements in the light-driven translocation of proteins in rod photoreceptors.
    Peterson JJ; Orisme W; Fellows J; McDowell JH; Shelamer CL; Dugger DR; Smith WC
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):3988-98. PubMed ID: 16249472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatic and lipid anchor contributions to the interaction of transducin with membranes: mechanistic implications for activation and translocation.
    Kosloff M; Alexov E; Arshavsky VY; Honig B
    J Biol Chem; 2008 Nov; 283(45):31197-207. PubMed ID: 18782760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosducin facilitates light-driven transducin translocation in rod photoreceptors. Evidence from the phosducin knockout mouse.
    Sokolov M; Strissel KJ; Leskov IB; Michaud NA; Govardovskii VI; Arshavsky VY
    J Biol Chem; 2004 Apr; 279(18):19149-56. PubMed ID: 14973130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin-transducin coupling: role of the Galpha C-terminus in nucleotide exchange catalysis.
    Herrmann R; Heck M; Henklein P; Kleuss C; Wray V; Hofmann KP; Ernst OP
    Vision Res; 2006 Dec; 46(27):4582-93. PubMed ID: 17011013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dominant-negative Galpha mutant that traps a stable rhodopsin-Galpha-GTP-betagamma complex.
    Ramachandran S; Cerione RA
    J Biol Chem; 2011 Apr; 286(14):12702-11. PubMed ID: 21285355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of cone and rod transducins using chimeric Gα subunits.
    Gopalakrishna KN; Boyd KK; Artemyev NO
    Biochemistry; 2012 Feb; 51(8):1617-24. PubMed ID: 22324825
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transducin activation state controls its light-dependent translocation in rod photoreceptors.
    Kerov V; Chen D; Moussaif M; Chen YJ; Chen CK; Artemyev NO
    J Biol Chem; 2005 Dec; 280(49):41069-76. PubMed ID: 16207703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Farnesylation of retinal transducin underlies its translocation during light adaptation.
    Kassai H; Aiba A; Nakao K; Nakamura K; Katsuki M; Xiong WH; Yau KW; Imai H; Shichida Y; Satomi Y; Takao T; Okano T; Fukada Y
    Neuron; 2005 Aug; 47(4):529-39. PubMed ID: 16102536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-terminal fatty acylation of transducin profoundly influences its localization and the kinetics of photoresponse in rods.
    Kerov V; Rubin WW; Natochin M; Melling NA; Burns ME; Artemyev NO
    J Neurosci; 2007 Sep; 27(38):10270-7. PubMed ID: 17881533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.