These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 21044687)

  • 21. Task- and stimulus-related cortical networks in language production: Exploring similarity of MEG- and fMRI-derived functional connectivity.
    Liljeström M; Stevenson C; Kujala J; Salmelin R
    Neuroimage; 2015 Oct; 120():75-87. PubMed ID: 26169324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics.
    Deiber MP; Missonnier P; Bertrand O; Gold G; Fazio-Costa L; Ibañez V; Giannakopoulos P
    J Cogn Neurosci; 2007 Jan; 19(1):158-72. PubMed ID: 17214572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain Networks Communicate Through Theta Oscillations to Encode High Load in a Visuospatial Working Memory Task: An EEG Connectivity Study.
    Muthukrishnan SP; Soni S; Sharma R
    Brain Topogr; 2020 Jan; 33(1):75-85. PubMed ID: 31650366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cortical oscillatory power changes during auditory oddball task revealed by spatially filtered magnetoencephalography.
    Ishii R; Canuet L; Herdman A; Gunji A; Iwase M; Takahashi H; Nakahachi T; Hirata M; Robinson SE; Pantev C; Takeda M
    Clin Neurophysiol; 2009 Mar; 120(3):497-504. PubMed ID: 19138878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spontaneous brain oscillations as neural fingerprints of working memory capacities: A resting-state MEG study.
    Oswald V; Zerouali Y; Boulet-Craig A; Krajinovic M; Laverdière C; Sinnett D; Jolicoeur P; Lippé S; Jerbi K; Robaey P
    Cortex; 2017 Dec; 97():109-124. PubMed ID: 29102813
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatiotemporal and spectral dynamics of multi-item working memory as revealed by the n-back task using MEG.
    Costers L; Van Schependom J; Laton J; Baijot J; Sjøgård M; Wens V; De Tiège X; Goldman S; D'Haeseleer M; D'hooghe MB; Woolrich M; Nagels G
    Hum Brain Mapp; 2020 Jun; 41(9):2431-2446. PubMed ID: 32180307
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-frequency power correlations reveal the right superior temporal gyrus as a hub region during working memory maintenance.
    Park H; Kang E; Kang H; Kim JS; Jensen O; Chung CK; Lee DS
    Brain Connect; 2011; 1(6):460-72. PubMed ID: 22432903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the topological organisation of beta oscillations in motor cortex using MEG.
    Barratt EL; Francis ST; Morris PG; Brookes MJ
    Neuroimage; 2018 Nov; 181():831-844. PubMed ID: 29960087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The temporal, spatial, and frequency dimensions of neural oscillations associated with verbal working memory.
    Stephane M; Leuthold A; Kuskowski M; McClannahan K; Xu T
    Clin EEG Neurosci; 2012 Apr; 43(2):145-53. PubMed ID: 22715489
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Parieto-occipital sources account for the increase in alpha activity with working memory load.
    Tuladhar AM; ter Huurne N; Schoffelen JM; Maris E; Oostenveld R; Jensen O
    Hum Brain Mapp; 2007 Aug; 28(8):785-92. PubMed ID: 17266103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Working memory load modulates oscillatory activity and the distribution of fast frequencies across frontal theta phase during working memory maintenance.
    Fernández A; Pinal D; Díaz F; Zurrón M
    Neurobiol Learn Mem; 2021 Sep; 183():107476. PubMed ID: 34087476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short timescale abnormalities in the states of spontaneous synchrony in the functional neural networks in Alzheimer's disease.
    Sitnikova TA; Hughes JW; Ahlfors SP; Woolrich MW; Salat DH
    Neuroimage Clin; 2018; 20():128-152. PubMed ID: 30094163
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distinct β Band Oscillatory Networks Subserving Motor and Cognitive Control during Gait Adaptation.
    Wagner J; Makeig S; Gola M; Neuper C; Müller-Putz G
    J Neurosci; 2016 Feb; 36(7):2212-26. PubMed ID: 26888931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aging modulates the oscillatory dynamics underlying successful working memory encoding and maintenance.
    Proskovec AL; Heinrichs-Graham E; Wilson TW
    Hum Brain Mapp; 2016 Jun; 37(6):2348-61. PubMed ID: 26991358
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resting-state neuronal oscillatory correlates of working memory performance.
    Heister D; Diwakar M; Nichols S; Robb A; Angeles AM; Tal O; Harrington DL; Song T; Lee RR; Huang M
    PLoS One; 2013; 8(6):e66820. PubMed ID: 23825569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theta-Alpha Oscillations Bind the Hippocampus, Prefrontal Cortex, and Striatum during Recollection: Evidence from Simultaneous EEG-fMRI.
    Herweg NA; Apitz T; Leicht G; Mulert C; Fuentemilla L; Bunzeck N
    J Neurosci; 2016 Mar; 36(12):3579-87. PubMed ID: 27013686
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Frontal theta activity in humans increases with memory load in a working memory task.
    Jensen O; Tesche CD
    Eur J Neurosci; 2002 Apr; 15(8):1395-9. PubMed ID: 11994134
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer after Dual n-Back Training Depends on Striatal Activation Change.
    Salminen T; Kühn S; Frensch PA; Schubert T
    J Neurosci; 2016 Sep; 36(39):10198-213. PubMed ID: 27683914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring mechanisms of spontaneous functional connectivity in MEG: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations.
    Cabral J; Luckhoo H; Woolrich M; Joensson M; Mohseni H; Baker A; Kringelbach ML; Deco G
    Neuroimage; 2014 Apr; 90():423-35. PubMed ID: 24321555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coherent oscillatory networks supporting short-term memory retention.
    Payne L; Kounios J
    Brain Res; 2009 Jan; 1247():126-32. PubMed ID: 18976639
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.