These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21044693)

  • 1. Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants.
    Chevrier A; Hoemann CD; Sun J; Buschmann MD
    Osteoarthritis Cartilage; 2011 Jan; 19(1):136-44. PubMed ID: 21044693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.
    Hoemann CD; Sun J; McKee MD; Chevrier A; Rossomacha E; Rivard GE; Hurtig M; Buschmann MD
    Osteoarthritis Cartilage; 2007 Jan; 15(1):78-89. PubMed ID: 16895758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects.
    Chevrier A; Hoemann CD; Sun J; Buschmann MD
    Osteoarthritis Cartilage; 2007 Mar; 15(3):316-27. PubMed ID: 17008111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaffold-guided subchondral bone repair: implication of neutrophils and alternatively activated arginase-1+ macrophages.
    Hoemann CD; Chen G; Marchand C; Tran-Khanh N; Thibault M; Chevrier A; Sun J; Shive MS; Fernandes MJ; Poubelle PE; Centola M; El-Gabalawy H
    Am J Sports Med; 2010 Sep; 38(9):1845-56. PubMed ID: 20522834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects.
    Hoemann CD; Hurtig M; Rossomacha E; Sun J; Chevrier A; Shive MS; Buschmann MD
    J Bone Joint Surg Am; 2005 Dec; 87(12):2671-2686. PubMed ID: 16322617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereological analysis of subchondral angiogenesis induced by chitosan and coagulation factors in microdrilled articular cartilage defects.
    Mathieu C; Chevrier A; Lascau-Coman V; Rivard GE; Hoemann CD
    Osteoarthritis Cartilage; 2013 Jun; 21(6):849-59. PubMed ID: 23523901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls.
    Marchand C; Chen G; Tran-Khanh N; Sun J; Chen H; Buschmann MD; Hoemann CD
    Tissue Eng Part A; 2012 Mar; 18(5-6):508-19. PubMed ID: 21942869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.
    Guzmán-Morales J; Lafantaisie-Favreau CH; Chen G; Hoemann CD
    Osteoarthritis Cartilage; 2014 Feb; 22(2):323-33. PubMed ID: 24361795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone marrow stimulation induces greater chondrogenesis in trochlear vs condylar cartilage defects in skeletally mature rabbits.
    Chen H; Chevrier A; Hoemann CD; Sun J; Lascau-Coman V; Buschmann MD
    Osteoarthritis Cartilage; 2013 Jul; 21(7):999-1007. PubMed ID: 23611900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition.
    Lafantaisie-Favreau CH; Guzmán-Morales J; Sun J; Chen G; Harris A; Smith TD; Carli A; Henderson J; Stanish WD; Hoemann CD
    BMC Musculoskelet Disord; 2013 Jan; 14():27. PubMed ID: 23324433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A preliminary study of high viscous chitosan/glycerol phosphate with demineralized bone matrix to repair cartilage defects in rabbits].
    Jing B; Wang Z; Li B; Cheng Z; Kang Y; Li Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Dec; 22(12):1491-4. PubMed ID: 19137897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute Osteoclast Activity following Subchondral Drilling Is Promoted by Chitosan and Associated with Improved Cartilage Repair Tissue Integration.
    Chen G; Sun J; Lascau-Coman V; Chevrier A; Marchand C; Hoemann CD
    Cartilage; 2011 Apr; 2(2):173-85. PubMed ID: 26069578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Type II collagen and glycosaminoglycan expression induction in primary human chondrocyte by TGF-β1.
    Yoon HJ; Kim SB; Somaiya D; Noh MJ; Choi KB; Lim CL; Lee HY; Lee YJ; Yi Y; Lee KH
    BMC Musculoskelet Disord; 2015 Jun; 16():141. PubMed ID: 26059549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Healing of full-thickness articular cartilage defects treated with cultured autologous chondrogenic satellite cells isolated from chondral stem cell niche in rabbits.
    Singh NK; Singh GR; Jeong DK; Lee SJ
    J Surg Res; 2013 Aug; 183(2):629-38. PubMed ID: 23481563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone-Induced Chondroinduction in Sheep Jamshidi Biopsy Defects with and without Treatment by Subchondral Chitosan-Blood Implant: 1-Day, 3-Week, and 3-Month Repair.
    Bell AD; Lascau-Coman V; Sun J; Chen G; Lowerison MW; Hurtig MB; Hoemann CD
    Cartilage; 2013 Apr; 4(2):131-43. PubMed ID: 26069656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model.
    Bell AD; Hurtig MB; Quenneville E; Rivard GÉ; Hoemann CD
    Cartilage; 2017 Oct; 8(4):417-431. PubMed ID: 28934884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate.
    Huang Z; Nooeaid P; Kohl B; Roether JA; Schubert DW; Meier C; Boccaccini AR; Godkin O; Ertel W; Arens S; Schulze-Tanzil G
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():160-72. PubMed ID: 25746258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage.
    Mizuta H; Kudo S; Nakamura E; Otsuka Y; Takagi K; Hiraki Y
    Osteoarthritis Cartilage; 2004 Jul; 12(7):586-96. PubMed ID: 15219574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of marrow stromal cells derived chondrocytes on repair of full-thickness defects of rabbit articular cartilage].
    Wang WM; Hu YY
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2004 Jan; 18(1):58-62. PubMed ID: 14768092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of de-differentiated chondrocytes delivered by a heparin-based hydrogel to regenerate cartilage in partial-thickness defects.
    Kim M; Kim SE; Kang SS; Kim YH; Tae G
    Biomaterials; 2011 Nov; 32(31):7883-96. PubMed ID: 21802135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.