These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus). Slay CE; Enok S; Hicks JW; Wang T J Exp Biol; 2014 May; 217(Pt 10):1784-9. PubMed ID: 24311803 [TBL] [Abstract][Full Text] [Related]
4. Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1. Martin TG; Hunt DR; Langer SJ; Tan Y; Ebmeier CC; Leinwand LA Proc Natl Acad Sci U S A; 2024 Oct; 121(41):e2408719121. PubMed ID: 39352930 [TBL] [Abstract][Full Text] [Related]
5. Utility of the burmese Python as a model for studying plasticity of extreme physiological systems. Tan Y; Martin TG; Harrison BC; Leinwand LA J Muscle Res Cell Motil; 2023 Jun; 44(2):95-106. PubMed ID: 36316565 [TBL] [Abstract][Full Text] [Related]
6. Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus. Esbaugh AJ; Secor SM; Grosell M Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():120-6. PubMed ID: 26123779 [TBL] [Abstract][Full Text] [Related]
7. Selected regulation of gastrointestinal acid-base secretion and tissue metabolism for the diamondback water snake and Burmese python. Secor SM; Taylor JR; Grosell M J Exp Biol; 2012 Jan; 215(Pt 1):185-96. PubMed ID: 22162867 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis of the response of Burmese python to digestion. Duan J; Sanggaard KW; Schauser L; Lauridsen SE; Enghild JJ; Schierup MH; Wang T Gigascience; 2017 Aug; 6(8):1-18. PubMed ID: 28873961 [TBL] [Abstract][Full Text] [Related]
9. Fatty acids identified in the Burmese python promote beneficial cardiac growth. Riquelme CA; Magida JA; Harrison BC; Wall CE; Marr TG; Secor SM; Leinwand LA Science; 2011 Oct; 334(6055):528-31. PubMed ID: 22034436 [TBL] [Abstract][Full Text] [Related]
10. Effects of feeding and digestion on myocardial contractility and expression of calcium-handling proteins in Burmese pythons (Python molurus). da Silva Vasconcelos E; Kalinin AL; Cipriano RC; Dos Santos Beserra S; Lopes AG; da Costa Leite CA; Monteiro DA Comp Biochem Physiol B Biochem Mol Biol; 2020 Feb; 240():110371. PubMed ID: 31676333 [TBL] [Abstract][Full Text] [Related]
11. Adaptive regulation of digestive performance in the genus Python. Ott BD; Secor SM J Exp Biol; 2007 Jan; 210(Pt 2):340-56. PubMed ID: 17210969 [TBL] [Abstract][Full Text] [Related]
12. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding. Andrew AL; Card DC; Ruggiero RP; Schield DR; Adams RH; Pollock DD; Secor SM; Castoe TA Physiol Genomics; 2015 May; 47(5):147-57. PubMed ID: 25670730 [TBL] [Abstract][Full Text] [Related]
13. Growth and stress response mechanisms underlying post-feeding regenerative organ growth in the Burmese python. Andrew AL; Perry BW; Card DC; Schield DR; Ruggiero RP; McGaugh SE; Choudhary A; Secor SM; Castoe TA BMC Genomics; 2017 May; 18(1):338. PubMed ID: 28464824 [TBL] [Abstract][Full Text] [Related]
14. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. Castoe TA; de Koning AP; Hall KT; Card DC; Schield DR; Fujita MK; Ruggiero RP; Degner JF; Daza JM; Gu W; Reyes-Velasco J; Shaney KJ; Castoe JM; Fox SE; Poole AW; Polanco D; Dobry J; Vandewege MW; Li Q; Schott RK; Kapusta A; Minx P; Feschotte C; Uetz P; Ray DA; Hoffmann FG; Bogden R; Smith EN; Chang BS; Vonk FJ; Casewell NR; Henkel CV; Richardson MK; Mackessy SP; Bronikowski AM; Yandell M; Warren WC; Secor SM; Pollock DD Proc Natl Acad Sci U S A; 2013 Dec; 110(51):20645-50. PubMed ID: 24297902 [TBL] [Abstract][Full Text] [Related]
15. Novel ecological and climatic conditions drive rapid adaptation in invasive Florida Burmese pythons. Card DC; Perry BW; Adams RH; Schield DR; Young AS; Andrew AL; Jezkova T; Pasquesi GIM; Hales NR; Walsh MR; Rochford MR; Mazzotti FJ; Hart KM; Hunter ME; Castoe TA Mol Ecol; 2018 Dec; 27(23):4744-4757. PubMed ID: 30269397 [TBL] [Abstract][Full Text] [Related]
16. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus. Secor SM; White SE J Exp Biol; 2010 Jan; 213(1):78-88. PubMed ID: 20008365 [TBL] [Abstract][Full Text] [Related]
17. Change of cardiac function, but not form, in postprandial pythons. Jensen B; Larsen CK; Nielsen JM; Simonsen LS; Wang T Comp Biochem Physiol A Mol Integr Physiol; 2011 Sep; 160(1):35-42. PubMed ID: 21605694 [TBL] [Abstract][Full Text] [Related]
18. Burmese pythons exhibit a transient adaptation to nutrient overload that prevents liver damage. Magida JA; Tan Y; Wall CE; Harrison BC; Marr TG; Peter AK; Riquelme CA; Leinwand LA J Gen Physiol; 2022 Apr; 154(4):. PubMed ID: 35323838 [TBL] [Abstract][Full Text] [Related]
19. Matched regulation of gastrointestinal performance in the Burmese python, Python molurus. Cox CL; Secor SM J Exp Biol; 2008 Apr; 211(Pt 7):1131-40. PubMed ID: 18344488 [TBL] [Abstract][Full Text] [Related]
20. Postprandial increase of oleoylethanolamide mobilization in small intestine of the Burmese python (Python molurus). Astarita G; Rourke BC; Andersen JB; Fu J; Kim JH; Bennett AF; Hicks JW; Piomelli D Am J Physiol Regul Integr Comp Physiol; 2006 May; 290(5):R1407-12. PubMed ID: 16373434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]