These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 21045117)
21. Effect of feeding on circulating micronutrient concentrations in the Burmese python (Python molurus). Secor SM; Nagy TR; Johnston KE; Tamura T Comp Biochem Physiol A Mol Integr Physiol; 2001 Jun; 129(2-3):673-9. PubMed ID: 11423336 [TBL] [Abstract][Full Text] [Related]
22. Digestive physiology of the Burmese python: broad regulation of integrated performance. Secor SM J Exp Biol; 2008 Dec; 211(Pt 24):3767-74. PubMed ID: 19043049 [TBL] [Abstract][Full Text] [Related]
23. Postprandial cardiac hypertrophy is sustained by mechanics, epigenetic, and metabolic reprogramming in pythons. Crocini C; Woulfe KC; Ozeroff CD; Perni S; Cardiello J; Walker CJ; Wilson CE; Anseth K; Allen MA; Leinwand LA Proc Natl Acad Sci U S A; 2024 Sep; 121(36):e2322726121. PubMed ID: 39159386 [TBL] [Abstract][Full Text] [Related]
24. Sequencing the genome of the Burmese python (Python molurus bivittatus) as a model for studying extreme adaptations in snakes. Castoe TA; de Koning JA; Hall KT; Yokoyama KD; Gu W; Smith EN; Feschotte C; Uetz P; Ray DA; Dobry J; Bogden R; Mackessy SP; Bronikowski AM; Warren WC; Secor SM; Pollock DD Genome Biol; 2011 Jul; 12(7):406. PubMed ID: 21801464 [TBL] [Abstract][Full Text] [Related]
25. Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius). Enok S; Simonsen LS; Pedersen SV; Wang T; Skovgaard N Am J Physiol Regul Integr Comp Physiol; 2012 May; 302(10):R1176-83. PubMed ID: 22422667 [TBL] [Abstract][Full Text] [Related]
26. Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus). Secor SM; Diamond J Am J Physiol; 1997 Mar; 272(3 Pt 2):R902-12. PubMed ID: 9087654 [TBL] [Abstract][Full Text] [Related]
27. Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus). Lignot JH; Helmstetter C; Secor SM Comp Biochem Physiol A Mol Integr Physiol; 2005 Jul; 141(3):280-91. PubMed ID: 16002308 [TBL] [Abstract][Full Text] [Related]
28. Molecular regulation of reversible cardiac remodeling: lessons from species with extreme physiological adaptations. Martin TG; Leinwand LA J Exp Biol; 2024 Oct; 227(20):. PubMed ID: 39344503 [TBL] [Abstract][Full Text] [Related]
29. The effects of fasting duration on the metabolic response to feeding in Python molurus: an evaluation of the energetic costs associated with gastrointestinal growth and upregulation. Overgaard J; Andersen JB; Wang T Physiol Biochem Zool; 2002; 75(4):360-8. PubMed ID: 12324892 [TBL] [Abstract][Full Text] [Related]
30. Gastric function and its contribution to the postprandial metabolic response of the Burmese python Python molurus. Secor SM J Exp Biol; 2003 May; 206(Pt 10):1621-30. PubMed ID: 12682094 [TBL] [Abstract][Full Text] [Related]
31. The Elusive Hypertrophy of the Python Heart. Jensen B; Wang T Physiology (Bethesda); 2024 Mar; 39(2):0. PubMed ID: 38085014 [TBL] [Abstract][Full Text] [Related]
32. Ventilatory and cardiovascular responses of a python (Python molurus) to exercise and digestion. Secor SM; Hicks JW; Bennett AF J Exp Biol; 2000 Aug; 203(Pt 16):2447-54. PubMed ID: 10903159 [TBL] [Abstract][Full Text] [Related]
33. Effects of meal size, clutch, and metabolism on the energy efficiencies of juvenile Burmese pythons, Python molurus. Cox CL; Secor SM Comp Biochem Physiol A Mol Integr Physiol; 2007 Dec; 148(4):861-8. PubMed ID: 17913527 [TBL] [Abstract][Full Text] [Related]
34. Functional changes with feeding in the gastro-intestinal epithelia of the Burmese python (Python molurus). Helmstetter C; Reix N; T'Flachebba M; Pope RK; Secor SM; Le Maho Y; Lignot JH Zoolog Sci; 2009 Sep; 26(9):632-8. PubMed ID: 19799514 [TBL] [Abstract][Full Text] [Related]
36. Fuel switching and energy partitioning during the postprandial metabolic response in the ball python (Python regius). Waas S; Werner RA; Starck JM J Exp Biol; 2010 Apr; 213(Pt 8):1266-71. PubMed ID: 20348338 [TBL] [Abstract][Full Text] [Related]
37. Histamine induces postprandial tachycardia through a direct effect on cardiac H2-receptors in pythons. Skovgaard N; Møller K; Gesser H; Wang T Am J Physiol Regul Integr Comp Physiol; 2009 Mar; 296(3):R774-85. PubMed ID: 19091908 [TBL] [Abstract][Full Text] [Related]
38. Weighing empirical and hypothetical evidence for assessing potential invasive species range limits: a review of the case of Burmese pythons in the USA. Engeman R; Avery ML; Jacobson E Environ Sci Pollut Res Int; 2014 Oct; 21(20):11973-8. PubMed ID: 24943887 [TBL] [Abstract][Full Text] [Related]
39. Improved cardiac filling facilitates the postprandial elevation of stroke volume in Python regius. Enok S; Leite GS; Leite CA; Gesser H; Hedrick MS; Wang T J Exp Biol; 2016 Oct; 219(Pt 19):3009-3018. PubMed ID: 27445352 [TBL] [Abstract][Full Text] [Related]
40. Expression of venom gene homologs in diverse python tissues suggests a new model for the evolution of snake venom. Reyes-Velasco J; Card DC; Andrew AL; Shaney KJ; Adams RH; Schield DR; Casewell NR; Mackessy SP; Castoe TA Mol Biol Evol; 2015 Jan; 32(1):173-83. PubMed ID: 25338510 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]