These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 21045551)

  • 1. DEAD-box protein facilitated RNA folding in vivo.
    Liebeg A; Mayer O; Waldsich C
    RNA Biol; 2010; 7(6):803-11. PubMed ID: 21045551
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo.
    Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R
    J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mss116p: a DEAD-box protein facilitates RNA folding.
    Sachsenmaier N; Waldsich C
    RNA Biol; 2013 Jan; 10(1):71-82. PubMed ID: 23064153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The brace for a growing scaffold: Mss116 protein promotes RNA folding by stabilizing an early assembly intermediate.
    Fedorova O; Pyle AM
    J Mol Biol; 2012 Sep; 422(3):347-65. PubMed ID: 22705286
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?
    Del Campo M; Tijerina P; Bhaskaran H; Mohr S; Yang Q; Jankowsky E; Russell R; Lambowitz AM
    Mol Cell; 2007 Oct; 28(1):159-66. PubMed ID: 17936712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
    Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A chemogenetic approach to study the structural basis of protein-facilitated RNA folding.
    Fedorova O
    Methods Mol Biol; 2014; 1086():177-91. PubMed ID: 24136604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing.
    Bifano AL; Turk EM; Caprara MG
    J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-facilitated folding of group II intron ribozymes.
    Fedorova O; Solem A; Pyle AM
    J Mol Biol; 2010 Apr; 397(3):799-813. PubMed ID: 20138894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual roles for the Mss116 cofactor during splicing of the ai5γ group II intron.
    Zingler N; Solem A; Pyle AM
    Nucleic Acids Res; 2010 Oct; 38(19):6602-9. PubMed ID: 20554854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of the C-terminal domain of the DEAD-box protein Mss116p analyzed in vivo and in vitro.
    Mohr G; Del Campo M; Mohr S; Yang Q; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2008 Feb; 375(5):1344-64. PubMed ID: 18096186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule analysis of Mss116-mediated group II intron folding.
    Karunatilaka KS; Solem A; Pyle AM; Rueda D
    Nature; 2010 Oct; 467(7318):935-9. PubMed ID: 20944626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Productive folding to the native state by a group II intron ribozyme.
    Swisher JF; Su LJ; Brenowitz M; Anderson VE; Pyle AM
    J Mol Biol; 2002 Jan; 315(3):297-310. PubMed ID: 11786013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo.
    Ruminski DJ; Watson PY; Mahen EM; Fedor MJ
    RNA; 2016 Mar; 22(3):416-27. PubMed ID: 26759451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DEAD-box protein CYT-19 is activated by exposed helices in a group I intron RNA.
    Jarmoskaite I; Bhaskaran H; Seifert S; Russell R
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2928-36. PubMed ID: 25002474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DEAD protein that activates intron self-splicing without unwinding RNA.
    Solem A; Zingler N; Pyle AM
    Mol Cell; 2006 Nov; 24(4):611-7. PubMed ID: 17188036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function.
    Huang HR; Rowe CE; Mohr S; Jiang Y; Lambowitz AM; Perlman PS
    Proc Natl Acad Sci U S A; 2005 Jan; 102(1):163-8. PubMed ID: 15618406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A DExH/D-box protein coordinates the two steps of splicing in a group I intron.
    Bifano AL; Caprara MG
    J Mol Biol; 2008 Nov; 383(3):667-82. PubMed ID: 18789947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.