These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 21045872)

  • 41. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.
    Shatokhina I; Obereder A; Rosensteiner M; Ramlau R
    Appl Opt; 2013 Apr; 52(12):2640-52. PubMed ID: 23669672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Active optics, adaptive optics, and laser guide stars.
    Hubin N; Noethe L
    Science; 1993 Nov; 262(5138):1390-4. PubMed ID: 17736819
    [TBL] [Abstract][Full Text] [Related]  

  • 43. LSPV+7, a branch-point-tolerant reconstructor for strong turbulence adaptive optics.
    Steinbock MJ; Hyde MW; Schmidt JD
    Appl Opt; 2014 Jun; 53(18):3821-31. PubMed ID: 24979411
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of star-oriented and layer-oriented wavefront sensing concepts for ground layer adaptive optics.
    Nicolle M; Fusco T; Michau V; Rousset G; Beuzit JL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Sep; 23(9):2233-45. PubMed ID: 16912749
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of curvature-based and Shack-Hartmann-based adaptive optics for the Gemini telescope.
    Rigaut F; Ellerbroek BL; Northcott MJ
    Appl Opt; 1997 May; 36(13):2856-68. PubMed ID: 18253284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Weighted Fried reconstructor and spatial-frequency response optimization of Shack-Hartmann wavefront sensing.
    Li T; Gong M; Huang L; Qiu Y; Xue Q
    Appl Opt; 2012 Oct; 51(29):7115-23. PubMed ID: 23052093
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of the Gaussian modeling algorithm to a Shack-Hartmann wavefront sensor for daylight adaptive optics.
    Xu L; Wang J; Yao K; Yang L
    Opt Lett; 2021 Sep; 46(17):4196-4199. PubMed ID: 34469973
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of methods for the reduction of reconstructed layers in atmospheric tomography.
    Saxenhuber D; Auzinger G; Louarn ML; Helin T
    Appl Opt; 2017 Apr; 56(10):2621-2629. PubMed ID: 28375221
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mitigation of truncation effects in elongated Shack-Hartmann laser guide star wavefront sensor images.
    Clare RM; Weddell SJ; Le Louarn M
    Appl Opt; 2020 Aug; 59(22):6431-6442. PubMed ID: 32749340
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved adaptive-optics performance using polychromatic speckle mitigation.
    Van Zandt NR; Spencer MF
    Appl Opt; 2020 Feb; 59(4):1071-1081. PubMed ID: 32225243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Advanced vibration suppression algorithms in adaptive optics systems.
    Correia C; Véran JP; Herriot G
    J Opt Soc Am A Opt Image Sci Vis; 2012 Mar; 29(3):185-94. PubMed ID: 22472746
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Centroid gain compensation in Shack-Hartmann adaptive optics systems with natural or laser guide star.
    Veran JP; Herriot G
    J Opt Soc Am A Opt Image Sci Vis; 2000 Aug; 17(8):1430-9. PubMed ID: 10935871
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Feasibility study of a layer-oriented wavefront sensor for solar telescopes.
    Marino J; Wöger F
    Appl Opt; 2014 Feb; 53(4):685-93. PubMed ID: 24514185
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Open-loop control of liquid-crystal spatial light modulators for vertical atmospheric turbulence wavefront correction.
    Liu C; Hu L; Mu Q; Cao Z; Xuan L
    Appl Opt; 2011 Jan; 50(1):82-9. PubMed ID: 21221164
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fast computation of an optimal controller for large-scale adaptive optics.
    Massioni P; Kulcsár C; Raynaud HF; Conan JM
    J Opt Soc Am A Opt Image Sci Vis; 2011 Nov; 28(11):2298-309. PubMed ID: 22048298
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Intrinsic limitations of Shack-Hartmann wavefront sensing on an extended laser guide source.
    Gratadour D; Gendron E; Rousset G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A171-81. PubMed ID: 21045878
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive optics system for a short wavelength mid-IR laser based on a Shack-Hartmann wavefront sensor and analysis of thermal noise impacts.
    Zhou H; Pilar J; Smrz M; Chen L; Čech M; Mocek T
    Appl Opt; 2022 Sep; 61(27):7958-7965. PubMed ID: 36255916
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Atmospheric turbulence profiling with SLODAR using multiple adaptive optics wavefront sensors.
    Wang L; Schöck M; Chanan G
    Appl Opt; 2008 Apr; 47(11):1880-92. PubMed ID: 18404187
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High precision wavefront correction using an influence function optimization method based on a hybrid adaptive optics system.
    Zheng Y; Sun C; Dai W; Zeng F; Xue Q; Wang D; Zhao W; Huang L
    Opt Express; 2019 Nov; 27(24):34937-34951. PubMed ID: 31878672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.