These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21045906)

  • 1. Analytical solutions to light scattering by plasmonic nanoparticles with nearly spherical shape and nonlocal effect.
    Xie HY; Ng MY; Chang YC
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):2411-22. PubMed ID: 21045906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies.
    Chang WS; Willingham B; Slaughter LS; Dominguez-Medina S; Swanglap P; Link S
    Acc Chem Res; 2012 Nov; 45(11):1936-45. PubMed ID: 22512668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the use of plasmonic nanoparticle pairs as a plasmon ruler: the dependence of the near-field dipole plasmon coupling on nanoparticle size and shape.
    Tabor C; Murali R; Mahmoud M; El-Sayed MA
    J Phys Chem A; 2009 Mar; 113(10):1946-53. PubMed ID: 19090688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method.
    Portalès H; Pinna N; Pileni MP
    J Phys Chem A; 2009 Apr; 113(16):4094-9. PubMed ID: 19278219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain effects on the SERS enhancements for spherical silver nanoparticles.
    Qian X; Park HS
    Nanotechnology; 2010 Sep; 21(36):365704. PubMed ID: 20699483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonances in spatially dispersive nano-objects: phenomenological treatise.
    Ginzburg P; Zayats AV
    ACS Nano; 2013 May; 7(5):4334-42. PubMed ID: 23570309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule Raman spectroscopy: a probe of surface dynamics and plasmonic fields.
    Haran G
    Acc Chem Res; 2010 Aug; 43(8):1135-43. PubMed ID: 20521801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface integral formulations for the design of plasmonic nanostructures.
    Forestiere C; Iadarola G; Rubinacci G; Tamburrino A; Dal Negro L; Miano G
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2314-27. PubMed ID: 23201792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Full analytical model for obtaining surface plasmon resonance modes of metal nanoparticle structures embedded in layered media.
    Simsek E
    Opt Express; 2010 Jan; 18(2):1722-33. PubMed ID: 20174000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scattering of light by plasmonic nanoparticles on a silicon substrate.
    Yang M; Li J; Li J; Zhu X
    Chemphyschem; 2012 Jul; 13(10):2573-7. PubMed ID: 22648599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling Fano lineshapes in plasmon-mediated light coupling into a substrate.
    Spinelli P; van Lare C; Verhagen E; Polman A
    Opt Express; 2011 May; 19 Suppl 3():A303-11. PubMed ID: 21643371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment.
    Miller MM; Lazarides AA
    J Phys Chem B; 2005 Nov; 109(46):21556-65. PubMed ID: 16853799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantum mechanical theory for single molecule-single nanoparticle surface enhanced Raman scattering.
    Gu W; Choi H; Kim K
    J Phys Chem A; 2007 Aug; 111(33):8121-5. PubMed ID: 17655285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities.
    Biris CG; Panoiu NC
    Opt Express; 2010 Aug; 18(16):17165-79. PubMed ID: 20721105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic directed self-assembly of liposome-hydrogel hybrid nanoparticles.
    Hong JS; Stavis SM; DePaoli Lacerda SH; Locascio LE; Raghavan SR; Gaitan M
    Langmuir; 2010 Jul; 26(13):11581-8. PubMed ID: 20429539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of particle shape and size effects in SERS using T-matrix calculations.
    Boyack R; Le Ru EC
    Phys Chem Chem Phys; 2009 Sep; 11(34):7398-405. PubMed ID: 19690711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.