BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

474 related articles for article (PubMed ID: 21046206)

  • 1. A comprehensive study of channel estimation for WBAN-based healthcare systems: feasibility of using multiband UWB.
    Islam SM; Kwak KS
    J Med Syst; 2012 Jun; 36(3):1553-67. PubMed ID: 21046206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of scattering, reflectivity, and transmitivity in WBAN channel: feasibility of using UWB.
    Kabir MH; Ashrafuzzaman K; Chowdhury MS; Kwak KS
    Sensors (Basel); 2010; 10(6):5503-29. PubMed ID: 22219673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy analysis of LDPC coded APSK modulated differential space-time-frequency coded for wireless body area network using MB-pulsed OFDM UWB technology.
    Manimegalai CT; Gauni S; Kalimuthu K
    Technol Health Care; 2017 Dec; 25(6):1189-1194. PubMed ID: 28946601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance comparison between UWB-IR and MB-OFDM with transmit diversity in implant communications.
    Shimizu Y; Furukawa T; Anzai D; Wang J
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5469-72. PubMed ID: 26737529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On IEEE 802.15.6 IR-UWB receivers - simulations for DBPSK modulation.
    Niemelä V; Hämäläinen M; Iinatti J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1676-9. PubMed ID: 24110027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the antenna-body distance on the on-ext and on-on channel link path gain in UWB WBAN applications.
    Tuovinen T; Kumpuniemi T; Hamalainen M; Yekeh Yazdandoost K; Iinatti J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1242-5. PubMed ID: 24109919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LTE-NBP with holistic UWB-WBAN approach for the energy efficient biomedical application.
    Kumar A; Rathore PS; Dubey AK; Agrawal R; Sharma KP
    Multimed Tools Appl; 2023 Mar; ():1-15. PubMed ID: 37362741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wireless Body Sensor Communication Systems Based on UWB and IBC Technologies: State-of-the-Art and Open Challenges.
    Čuljak I; Lučev Vasić Ž; Mihaldinec H; Džapo H
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32630376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks.
    Kopta V; Farserotu J; Enz C
    Sensors (Basel); 2017 May; 17(5):. PubMed ID: 28481248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a Secure Thermal-Energy Aware Routing Protocol in Wireless Body Area Network Based on Blockchain Technology.
    Shahbazi Z; Byun YC
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32604851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of a multi-access scheme and asynchronous transmit-only UWB for wireless body area networks.
    Keong HC; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6906-9. PubMed ID: 19964453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive survey of Wireless Body Area Networks : on PHY, MAC, and Network layers solutions.
    Ullah S; Higgins H; Braem B; Latre B; Blondia C; Moerman I; Saleem S; Rahman Z; Kwak KS
    J Med Syst; 2012 Jun; 36(3):1065-94. PubMed ID: 20721685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental implant communication of high data rate video using an ultra wideband radio link.
    Chávez-Santiago R; Balasingham I; Bergsland J; Zahid W; Takizawa K; Miura R; Li HB
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5175-8. PubMed ID: 24110901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation-based scenario-specific channel modeling for WBAN cooperative transmission schemes.
    Naganawa J; Wangchuk K; Kim M; Aoyagi T; Takada J
    IEEE J Biomed Health Inform; 2015 Mar; 19(2):559-70. PubMed ID: 24876134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of QoS-Aware Multi-Level MAC-Layer for Wireless Body Area Network.
    Hu L; Zhang Y; Feng D; Hassan MM; Alelaiwi A; Alamri A
    J Med Syst; 2015 Dec; 39(12):192. PubMed ID: 26490150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path loss variation of on-body UWB channel in the frequency bands of IEEE 802.15.6 standard.
    Goswami D; Sarma KC; Mahanta A
    Healthc Technol Lett; 2016 Jun; 3(2):129-35. PubMed ID: 27382482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual groups for patient WBAN monitoring in medical environments.
    Ivanov S; Foley C; Balasubramaniam S; Botvich D
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3238-46. PubMed ID: 22801487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of on-body communication channel and energy efficient topology design for wireless body area networks.
    Reusens E; Joseph W; Latré B; Braem B; Vermeeren G; Tanghe E; Martens L; Moerman I; Blondia C
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):933-45. PubMed ID: 19789118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Survey on LPWAN Technologies in WBAN for Remote Health-Care Monitoring.
    Olatinwo DD; Abu-Mahfouz A; Hancke G
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A human body model for efficient numerical characterization of UWB signal propagation in wireless body area networks.
    Lim HB; Baumann D; Li EP
    IEEE Trans Biomed Eng; 2011 Mar; 58(3):689-97. PubMed ID: 21062677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.