These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21046424)

  • 1. A constrained mixture model for developing mouse aorta.
    Wagenseil JE
    Biomech Model Mechanobiol; 2011 Oct; 10(5):671-87. PubMed ID: 21046424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive biaxial mechanical behavior of newborn mouse aorta with and without elastin.
    Kim J; Cocciolone AJ; Staiculescu MC; Mecham RP; Wagenseil JE
    J Mech Behav Biomed Mater; 2022 Feb; 126():105021. PubMed ID: 34864571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical anisotropy of inflated elastic tissue from the pig aorta.
    Lillie MA; Shadwick RE; Gosline JM
    J Biomech; 2010 Aug; 43(11):2070-8. PubMed ID: 20430395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
    Valentín A; Humphrey JD
    J Biomech Eng; 2009 Oct; 131(10):101006. PubMed ID: 19831476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
    Alford PW; Humphrey JD; Taber LA
    Biomech Model Mechanobiol; 2008 Aug; 7(4):245-62. PubMed ID: 17786493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Captopril treatment during development alleviates mechanically induced aortic remodeling in newborn elastin knockout mice.
    Kim J; Cocciolone AJ; Staiculescu MC; Mecham RP; Wagenseil JE
    Biomech Model Mechanobiol; 2020 Feb; 19(1):99-112. PubMed ID: 31270728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Remodeling of the constitutive equation while a blood vessel remodels itself under stress.
    Fung YC; Liu SQ; Zhou JB
    J Biomech Eng; 1993 Nov; 115(4B):453-9. PubMed ID: 8302025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M; Jalali P; Konttinen YT; Sarkomaa P
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory.
    Mousavi SJ; Avril S
    Biomech Model Mechanobiol; 2017 Oct; 16(5):1765-1777. PubMed ID: 28536892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are geometrical and structural variations along the length of the aorta governed by a principle of "optimal mechanical operation"?
    Rachev A; Greenwald S; Shazly T
    J Biomech Eng; 2013 Aug; 135(8):81006. PubMed ID: 23722287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of elastin to aortic development in mice.
    Wagenseil JE; Ciliberto CH; Knutsen RH; Levy MA; Kovacs A; Mecham RP
    Am J Physiol Heart Circ Physiol; 2010 Aug; 299(2):H257-64. PubMed ID: 20495146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The study of wall deformation and flow distribution with transmural pressure by three-dimensional model of thoracic aorta wall.
    Dabagh M; Jalali P; Konttinen YT
    Med Eng Phys; 2009 Sep; 31(7):816-24. PubMed ID: 19356969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model.
    Mousavi SJ; Farzaneh S; Avril S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1895-1913. PubMed ID: 31201620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries.
    Wagenseil JE; Nerurkar NL; Knutsen RH; Okamoto RJ; Li DY; Mecham RP
    Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1209-17. PubMed ID: 15863465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of elastin and collagen to the inflation response of the pig thoracic aorta: assessing elastin's role in mechanical homeostasis.
    Lillie MA; Armstrong TE; Gérard SG; Shadwick RE; Gosline JM
    J Biomech; 2012 Aug; 45(12):2133-41. PubMed ID: 22770359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress.
    Labrosse MR; Gerson ER; Veinot JP; Beller CJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():44-55. PubMed ID: 23127625
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an FEA framework for analysis of subject-specific aortic compliance based on 4D flow MRI.
    Concannon J; McGarry JP
    Acta Biomater; 2021 Apr; 125():154-171. PubMed ID: 33639309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Study of Growth and Remodeling in Ascending Thoracic Aortic Aneurysms Considering Variations of Smooth Muscle Cell Basal Tone.
    Ghavamian A; Mousavi SJ; Avril S
    Front Bioeng Biotechnol; 2020; 8():587376. PubMed ID: 33224937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical simulations of the nonsymmetric growth and remodeling of arteries under axial twisting.
    Han HC; Liu Q; Baek S
    J Biomech; 2022 Jul; 140():111165. PubMed ID: 35667148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elastic fibers and biomechanics of the aorta: Insights from mouse studies.
    Yanagisawa H; Wagenseil J
    Matrix Biol; 2020 Jan; 85-86():160-172. PubMed ID: 30880160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.