These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21046428)

  • 1. Natural attenuation of arsenic in the wetland system around abandoned mining area.
    An J; Kim JY; Kim KW; Park JY; Lee JS; Jang M
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():71-80. PubMed ID: 21046428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of arsenic in submerged soil by wetland plants.
    Jomjun N; Siripen T; Maliwan S; Jintapat N; Prasak T; Somporn C; Petch P
    Int J Phytoremediation; 2011 Jan; 13(1):35-46. PubMed ID: 21598766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antimony and arsenic exhibit contrasting spatial distributions in the sediment and vegetation of a contaminated wetland.
    Warnken J; Ohlsson R; Welsh DT; Teasdale PR; Chelsky A; Bennett WW
    Chemosphere; 2017 Aug; 180():388-395. PubMed ID: 28419952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea.
    Nam SM; Kim M; Hyun S; Lee SH
    Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.
    Kim CS; Stack DH; Rytuba JJ
    J Environ Monit; 2012 Jul; 14(7):1798-813. PubMed ID: 22718027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic pollution and fractionation in sediments and mine waste samples from different mine sites.
    Larios R; Fernández-Martínez R; Álvarez R; Rucandio I
    Sci Total Environ; 2012 Aug; 431():426-35. PubMed ID: 22704004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concentrations of arsenic and heavy metals in vegetation at two abandoned mine tailings in South Korea.
    Chang P; Kim JY; Kim KW
    Environ Geochem Health; 2005 Apr; 27(2):109-19. PubMed ID: 16003579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea.
    Kim JY; Kim KW; Ahn JS; Ko I; Lee CH
    Environ Geochem Health; 2005 Apr; 27(2):193-203. PubMed ID: 16003587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The association of microbial activity with Fe, S and trace element distribution in sediment cores within a natural wetland polluted by acid mine drainage.
    Aguinaga OE; Wakelin JFT; White KN; Dean AP; Pittman JK
    Chemosphere; 2019 Sep; 231():432-441. PubMed ID: 31146135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic sequestration by ferric iron plaque on cattail roots.
    Blute NK; Brabander DJ; Hemond HF; Sutton SR; Newville MG; Rivers ML
    Environ Sci Technol; 2004 Nov; 38(22):6074-7. PubMed ID: 15573609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of arsenic in the mining sites of Pine Creek Geosyncline, Northern Australia.
    Eapaea MP; Parry D; Noller B
    Sci Total Environ; 2007 Jul; 379(2-3):201-15. PubMed ID: 17499841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal content of charcoal in mining-impacted wetland sediments.
    Baker LL; Strawn DG; Rember WC; Sprenke KF
    Sci Total Environ; 2011 Jan; 409(3):588-94. PubMed ID: 21093017
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of plants in metal cycling in a tidal wetland: implications for phytoremidiation.
    Teuchies J; Jacobs S; Oosterlee L; Bervoets L; Meire P
    Sci Total Environ; 2013 Feb; 445-446():146-54. PubMed ID: 23333510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants].
    Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM
    Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of trichloroethylene in wetland microcosms containing broad-leaved cattail and eastern cottonwood.
    Bankston JL; Sola DL; Komor AT; Dwyer DF
    Water Res; 2002 Mar; 36(6):1539-46. PubMed ID: 11996342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron hazard in an impacted estuary: Contrasting controls of plants and implications to phytoremediation.
    Ferreira AD; Queiroz HM; Otero XL; Barcellos D; Bernardino ÂF; Ferreira TO
    J Hazard Mater; 2022 Apr; 428():128216. PubMed ID: 35033915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a nanoscale zero-valent iron amendment as a potential tool to reduce mobility, toxicity, and bioaccumulation of arsenic and mercury from wetland sediments.
    Chapman EEV; Moore C; Campbell LM
    Environ Sci Pollut Res Int; 2020 May; 27(15):18757-18772. PubMed ID: 32207007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relevance of the microbial community to Sb and As biogeochemical cycling in natural wetlands.
    Deng J; Xiao T; Fan W; Ning Z; Xiao E
    Sci Total Environ; 2022 Apr; 818():151826. PubMed ID: 34822895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands.
    Olmos-Márquez MA; Alarcón-Herrera MT; Martín-Domínguez IR
    Environ Sci Pollut Res Int; 2012 Mar; 19(3):763-71. PubMed ID: 21935698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.