BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 21046950)

  • 1. Kinetic and thermodynamic studies of the adsorption of heavy metals on to a new adsorbent: coal mine drainage sludge.
    Cui M; Jang M; Cho SH; Khim J
    Environ Technol; 2010 Oct; 31(11):1203-11. PubMed ID: 21046950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuous pilot-scale system using coal-mine drainage sludge to treat acid mine drainage contaminated with high concentrations of Pb, Zn, and other heavy metals.
    Cui M; Jang M; Cho SH; Khim J; Cannon FS
    J Hazard Mater; 2012 May; 215-216():122-8. PubMed ID: 22421342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential application of sludge produced from coal mine drainage treatment for removing Zn(II) in an aqueous phase.
    Cui M; Jang M; Cho SH; Khim J
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():103-12. PubMed ID: 21063752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of dissolved Zn(II) using coal mine drainage sludge: implications for acidic wastewater treatment.
    Cui M; Jang M; Cannon FS; Na S; Khim J; Park JK
    J Environ Manage; 2013 Feb; 116():107-12. PubMed ID: 23295677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic adsorption on two types of powdered and beaded coal mine drainage sludge adsorbent.
    Kim D; Ren Y; Cui M; Lee Y; Kim J; Kwon O; Ji W; Khim J
    Chemosphere; 2021 Jun; 272():129560. PubMed ID: 33460828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions.
    Unlü N; Ersoz M
    J Hazard Mater; 2006 Aug; 136(2):272-80. PubMed ID: 16442227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metal adsorption by modified oak sawdust: thermodynamics and kinetics.
    Argun ME; Dursun S; Ozdemir C; Karatas M
    J Hazard Mater; 2007 Mar; 141(1):77-85. PubMed ID: 16879919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of copper(II) onto sewage sludge-derived materials via microwave irradiation.
    Wang XJ; Xu XM; Liang X; Wang Y; Liu M; Wang X; Xia SQ; Zhao JF; Yin DQ; Zhang YL
    J Hazard Mater; 2011 Sep; 192(3):1226-33. PubMed ID: 21737200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues.
    Güzel F; Yakut H; Topal G
    J Hazard Mater; 2008 May; 153(3):1275-87. PubMed ID: 17980960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coal mine drainage sludge and its application for treating metallic mine effluent.
    Jang M
    Rev Environ Health; 2014; 29(1-2):95-100. PubMed ID: 24695032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of Pb(II) ions from aqueous solution by a waste mud from copper mine industry: equilibrium, kinetic and thermodynamic study.
    Ozdes D; Gundogdu A; Kemer B; Duran C; Senturk HB; Soylak M
    J Hazard Mater; 2009 Jul; 166(2-3):1480-7. PubMed ID: 19167162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clarified sludge (basic oxygen furnace sludge)--an adsorbent for removal of Pb(II) from aqueous solutions--kinetics, thermodynamics and desorption studies.
    Naiya TK; Bhattacharya AK; Das SK
    J Hazard Mater; 2009 Oct; 170(1):252-62. PubMed ID: 19520500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of heavy metal ions by iron oxide coated sewage sludge.
    Phuengprasop T; Sittiwong J; Unob F
    J Hazard Mater; 2011 Feb; 186(1):502-7. PubMed ID: 21167637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metals binding properties of esterified lemon.
    Arslanoglu H; Altundogan HS; Tumen F
    J Hazard Mater; 2009 May; 164(2-3):1406-13. PubMed ID: 18980807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants.
    Wei X; Viadero RC; Bhojappa S
    Water Res; 2008 Jul; 42(13):3275-84. PubMed ID: 18490048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of toxic elements from aqueous solution using bentonite modified with L-histidine.
    Bakatula EN; Cukrowska EM; Weiersbye IM; Mihaly-Cozmuta L; Tutu H
    Water Sci Technol; 2014; 70(12):2022-30. PubMed ID: 25521139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and thermodynamic aspects of Cu(II) and Cr(III) removal from aqueous solutions using rose waste biomass.
    Iftikhar AR; Bhatti HN; Hanif MA; Nadeem R
    J Hazard Mater; 2009 Jan; 161(2-3):941-7. PubMed ID: 18508197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent.
    Mohan S; Gandhimathi R
    J Hazard Mater; 2009 Sep; 169(1-3):351-9. PubMed ID: 19395171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.