These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21046996)

  • 1. Studies on the utility of plant cellulose waste for the bioadsorption of crystal violet dye.
    Mahesh S; Kumar GV; Agrawal P
    J Environ Biol; 2010 May; 31(3):277-80. PubMed ID: 21046996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of cellulose and sugarcane bagasse oxidation: Application for adsorptive removal of crystal violet and auramine-O from aqueous solution.
    Martins LR; Rodrigues JAV; Adarme OFH; Melo TMS; Gurgel LVA; Gil LF
    J Colloid Interface Sci; 2017 May; 494():223-241. PubMed ID: 28160707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turning calcium carbonate into a cost-effective wastewater-sorbing material by occluding waste dye.
    Zhao DH; Gao HW
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):97-105. PubMed ID: 19263103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material.
    Gupta VK; Ali I; Saini VK
    J Colloid Interface Sci; 2007 Nov; 315(1):87-93. PubMed ID: 17689548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of hazardous dye crystal violet from wastewater by waste materials.
    Mittal A; Mittal J; Malviya A; Kaur D; Gupta VK
    J Colloid Interface Sci; 2010 Mar; 343(2):463-73. PubMed ID: 20045526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal and recovery of hazardous triphenylmethane dye, Methyl Violet through adsorption over granulated waste materials.
    Mittal A; Gajbe V; Mittal J
    J Hazard Mater; 2008 Jan; 150(2):364-75. PubMed ID: 17543448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of functionalization on the adsorption capacity of cellulose for the removal of methyl violet.
    Musyoka SM; Mittal H; Mishra SB; Ngila JC
    Int J Biol Macromol; 2014 Apr; 65():389-97. PubMed ID: 24480254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption.
    Saeed A; Sharif M; Iqbal M
    J Hazard Mater; 2010 Jul; 179(1-3):564-72. PubMed ID: 20381962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal of chromium from industrial waste by using eucalyptus bark.
    Sarin V; Pant KK
    Bioresour Technol; 2006 Jan; 97(1):15-20. PubMed ID: 16154498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption studies of methylene blue and gentian violet on sugarcane bagasse modified with EDTA dianhydride (EDTAD) in aqueous solutions: kinetic and equilibrium aspects.
    Gusmão KA; Gurgel LV; Melo TM; Gil LF
    J Environ Manage; 2013 Mar; 118():135-43. PubMed ID: 23428463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Process development for the removal and recovery of hazardous dye erythrosine from wastewater by waste materials-Bottom Ash and De-Oiled Soya as adsorbents.
    Mittal A; Mittal J; Kurup L; Singh AK
    J Hazard Mater; 2006 Nov; 138(1):95-105. PubMed ID: 16806679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: A novel low cost adsorbent.
    Jayasantha Kumari H; Krishnamoorthy P; Arumugam TK; Radhakrishnan S; Vasudevan D
    Int J Biol Macromol; 2017 Mar; 96():324-333. PubMed ID: 27889343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste.
    Sewu DD; Boakye P; Woo SH
    Bioresour Technol; 2017 Jan; 224():206-213. PubMed ID: 27839858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential use of low-cost lignocellulosic waste for the removal of direct violet 51 from aqueous solution: equilibrium and breakthrough studies.
    Sadaf S; Bhatti HN; Nausheen S; Noreen S
    Arch Environ Contam Toxicol; 2014 May; 66(4):557-71. PubMed ID: 24468968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption study for the removal of a basic dye: experimental and modeling.
    Chakraborty S; De S; DasGupta S; Basu JK
    Chemosphere; 2005 Feb; 58(8):1079-86. PubMed ID: 15664615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic, isotherm and thermodynamic studies of the adsorption of crystal violet by activated carbon from peanut shells.
    Zhang JX; Ou LL
    Water Sci Technol; 2013; 67(4):737-44. PubMed ID: 23306250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of core-shell SiO₂@MgO with flower like morphology for removal of crystal violet in water.
    Pei Y; Wang M; Tian D; Xu X; Yuan L
    J Colloid Interface Sci; 2015 Sep; 453():194-201. PubMed ID: 25985423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Basic Dye Adsorption onto Clay/MnFe
    Kanwal A; Bhatti HN; Iqbal M; Noreen S
    Water Environ Res; 2017 Apr; 89(4):301-311. PubMed ID: 28377000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoporous Nb
    Umpierres CS; Prola LD; Adebayo MA; Lima EC; Dos Reis GS; Kunzler DD; Dotto GL; Arenas LT; Benvenutti EV
    Environ Technol; 2017 Mar; 38(5):566-578. PubMed ID: 27388029
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Acid Violet 17 from aqueous solutions by adsorption onto activated carbon prepared from sunflower seed hull.
    Thinakaran N; Baskaralingam P; Pulikesi M; Panneerselvam P; Sivanesan S
    J Hazard Mater; 2008 Mar; 151(2-3):316-22. PubMed ID: 17689864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.