BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 21047118)

  • 1. Copper toxicity to bioluminescent Nitrosomonas europaea in soil is explained by the free metal ion activity in pore water.
    Ore S; Mertens J; Brandt KK; Smolders E
    Environ Sci Technol; 2010 Dec; 44(23):9201-6. PubMed ID: 21047118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Cd and Pb toxicity to Vibrio fischeri using biotic ligand-based models in soil.
    An J; Jeong S; Moon HS; Jho EH; Nam K
    J Hazard Mater; 2012 Feb; 203-204():69-76. PubMed ID: 22197563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model.
    Hatano A; Shoji R
    Environ Toxicol; 2008 Jun; 23(3):372-8. PubMed ID: 18214895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a biotic ligand model (BLM) predicting nickel toxicity to barley (Hordeum vulgare).
    Lock K; Van Eeckhout H; De Schamphelaere KA; Criel P; Janssen CR
    Chemosphere; 2007 Jan; 66(7):1346-52. PubMed ID: 16908050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of major ions on the toxicity of copper to Hyalella azteca and implications for the biotic ligand model.
    Borgmann U; Nowierski M; Dixon DG
    Aquat Toxicol; 2005 Jul; 73(3):268-87. PubMed ID: 15878788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid/solution Cu fractionations/speciation of a Cu contaminated soil after pilot-scale electrokinetic remediation and their relationships with soil microbial and enzyme activities.
    Wang QY; Zhou DM; Cang L; Li LZ; Wang P
    Environ Pollut; 2009; 157(8-9):2203-8. PubMed ID: 19427727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model.
    Lofts S; Criel P; Janssen CR; Lock K; McGrath SP; Oorts K; Rooney CP; Smolders E; Spurgeon DJ; Svendsen C; Van Eeckhout H; Zhao FZ
    Environ Pollut; 2013 Jul; 178():244-53. PubMed ID: 23584604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and sensitive Nitrosomonas europaea biosensor assay for quantification of bioavailable ammonium sensu strictu in soil.
    Nguyen MD; Risgaard-Petersen N; Sørensen J; Brandt KK
    Environ Sci Technol; 2011 Feb; 45(3):1048-54. PubMed ID: 21174468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Addressing geographic variability in the comparative toxicity potential of copper and nickel in soils.
    Owsianiak M; Rosenbaum RK; Huijbregts MA; Hauschild MZ
    Environ Sci Technol; 2013 Apr; 47(7):3241-50. PubMed ID: 23445085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refining a biotic ligand model for nickel toxicity to barley root elongation in solution culture.
    Li B; Zhang X; Wang X; Ma Y
    Ecotoxicol Environ Saf; 2009 Sep; 72(6):1760-6. PubMed ID: 19481262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting acute copper toxicity to valve closure behavior in the freshwater clam Corbicula fluminea supports the biotic ligand model.
    Liao CM; Jou LJ; Lin CM; Chiang KC; Yeh CH; Chou BY
    Environ Toxicol; 2007 Jun; 22(3):295-307. PubMed ID: 17497636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model.
    Luo XS; Li LZ; Zhou DM
    Chemosphere; 2008 Sep; 73(3):401-6. PubMed ID: 18585752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of Cu toxicity to barley root elongation in soil with a Terrestrial Biotic Ligand Model developed from sand culture.
    Lin Y; Allen HE; Di Toro DM
    Ecotoxicol Environ Saf; 2018 Feb; 148():336-345. PubMed ID: 29091836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of calcium and pH on the uptake and toxicity of copper in Folsomia candida exposed to simplified soil solutions.
    Ardestani MM; Verweij RA; van Gestel CA
    J Hazard Mater; 2013 Oct; 261():405-13. PubMed ID: 23973473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity interactions of cadmium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation.
    Chaperon S; Sauvé S
    Ecotoxicol Environ Saf; 2008 May; 70(1):1-9. PubMed ID: 18068781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper toxicity thresholds in Chinese soils based on substrate-induced nitrification assay.
    Li XF; Sun JW; Huang YZ; Ma YB; Zhu YG
    Environ Toxicol Chem; 2010 Feb; 29(2):294-300. PubMed ID: 20821447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar reduces copper toxicity in Chenopodium quinoa Willd. In a sandy soil.
    Buss W; Kammann C; Koyro HW
    J Environ Qual; 2012; 41(4):1157-65. PubMed ID: 22751058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-phase contact assay that uses a lux-marked Nitrosomonas europaea reporter strain to estimate toxicity of bioavailable linear alkylbenzene sulfonate in soil.
    Brandt KK; Pedersen A; Sørensen J
    Appl Environ Microbiol; 2002 Jul; 68(7):3502-8. PubMed ID: 12089034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils.
    Ali NA; Ater M; Sunahara GI; Robidoux PY
    Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.