BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 21047275)

  • 1. Hypericin emulsomes combined with hollow microneedles as a non-invasive photodynamic platform for rheumatoid arthritis treatment.
    Abd-El-Azim H; Abbas H; El Sayed N; Mousa MR; Elbardisy HM; Zewail M
    Int J Pharm; 2024 Mar; 653():123876. PubMed ID: 38331331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formulation and Characterization of Phytostanol Ester Solid Lipid Nanoparticles for the Management of Hypercholesterolemia: An ex vivo Study.
    Shrestha SC; Ghebremeskel K; White K; Minelli C; Tewfik I; Thapa P; Tewfik S
    Int J Nanomedicine; 2021; 16():1977-1992. PubMed ID: 33727810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined photodynamic therapy and hollow microneedle approach for effective non-invasive delivery of hypericin for the management of imiquimod-induced psoriasis.
    Zewail M; Abbas H; El Sayed N; Abd-El-Azim H
    J Drug Target; 2024 Jun; ():1-12. PubMed ID: 38853622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lactosylated gramicidin-based lipid nanoparticles (Lac-GLN) for targeted delivery of anti-miR-155 to hepatocellular carcinoma.
    Zhang M; Zhou X; Wang B; Yung BC; Lee LJ; Ghoshal K; Lee RJ
    J Control Release; 2013 Jun; 168(3):251-61. PubMed ID: 23567045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved anticancer efficacy of methyl pyropheophorbide-a-incorporated solid lipid nanoparticles in photodynamic therapy.
    Yeo S; Lee TH; Kim MJ; Shim YK; Yoon I; Song YK; Lee WK
    Sci Rep; 2023 May; 13(1):7391. PubMed ID: 37149617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Hypericin-Mediated Photodynamic Therapy on the Secretion of Soluble TNF Receptors by Oral Cancer Cells.
    Olek M; Machorowska-Pieniążek A; Czuba ZP; Cieślar G; Kawczyk-Krupka A
    Pharmaceutics; 2023 Apr; 15(4):. PubMed ID: 37111765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotherapeutic Intervention in Photodynamic Therapy for Cancer.
    Itoo AM; Paul M; Padaga SG; Ghosh B; Biswas S
    ACS Omega; 2022 Dec; 7(50):45882-45909. PubMed ID: 36570217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid Lipid Nanoparticles of Curcumin Designed for Enhanced Bioavailability and Anticancer Efficiency.
    Yeo S; Kim MJ; Shim YK; Yoon I; Lee WK
    ACS Omega; 2022 Oct; 7(40):35875-35884. PubMed ID: 36249382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional Nanoplatforms as a Novel Effective Approach in Photodynamic Therapy and Chemotherapy, to Overcome Multidrug Resistance in Cancer.
    Majerník M; Jendželovský R; Vargová J; Jendželovská Z; Fedoročko P
    Pharmaceutics; 2022 May; 14(5):. PubMed ID: 35631660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid based nanoparticles as a novel treatment modality for hepatocellular carcinoma: a comprehensive review on targeting and recent advances.
    Mahmoud K; Swidan S; El-Nabarawi M; Teaima M
    J Nanobiotechnology; 2022 Mar; 20(1):109. PubMed ID: 35248080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies.
    Gugleva V; Ivanova N; Sotirova Y; Andonova V
    Pharmaceuticals (Basel); 2021 Aug; 14(9):. PubMed ID: 34577536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimuli-Responsive Biomaterials for Vaccines and Immunotherapeutic Applications.
    Pacifici N; Bolandparvaz A; Lewis JS
    Adv Ther (Weinh); 2020 Nov; 3(11):2000129. PubMed ID: 32838028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Influence of Hypericin-Mediated Photodynamic Therapy on Interleukin-8 and -10 Secretion in Colon Cancer Cells.
    Kaleta-Richter M; Aebisher D; Jaworska D; Czuba Z; Cieślar G; Kawczyk-Krupka A
    Integr Cancer Ther; 2020; 19():1534735420918931. PubMed ID: 32508149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile fabrication of hypericin-entrapped glyconanoparticles for targeted photodynamic therapy.
    Shao C; Shang K; Xu H; Zhang Y; Pei Z; Pei Y
    Int J Nanomedicine; 2018; 13():4319-4331. PubMed ID: 30087563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.
    Calixto GM; Bernegossi J; de Freitas LM; Fontana CR; Chorilli M
    Molecules; 2016 Mar; 21(3):342. PubMed ID: 26978341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of hypericin-loaded solid lipid nanoparticles: physicochemical properties, photostability and phototoxicity.
    Youssef T; Fadel M; Fahmy R; Kassab K
    Pharm Dev Technol; 2012; 17(2):177-86. PubMed ID: 21047275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency.
    Lima AM; Pizzol CD; Monteiro FB; Creczynski-Pasa TB; Andrade GP; Ribeiro AO; Perussi JR
    J Photochem Photobiol B; 2013 Aug; 125():146-54. PubMed ID: 23816959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?
    Das S; Ng WK; Tan RB
    Eur J Pharm Sci; 2012 Aug; 47(1):139-51. PubMed ID: 22664358
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.