These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 21047276)
1. Optimization of freeze-drying condition of amikacin solid lipid nanoparticles using D-optimal experimental design. Varshosaz J; Ghaffari S; Khoshayand MR; Atyabi F; Dehkordi AJ; Kobarfard F Pharm Dev Technol; 2012; 17(2):187-94. PubMed ID: 21047276 [TBL] [Abstract][Full Text] [Related]
2. Stability and antimicrobial effect of amikacin-loaded solid lipid nanoparticles. Ghaffari S; Varshosaz J; Saadat A; Atyabi F Int J Nanomedicine; 2010 Dec; 6():35-43. PubMed ID: 21289980 [TBL] [Abstract][Full Text] [Related]
3. Optimization of the lyophilization process for long-term stability of solid-lipid nanoparticles. Howard MD; Lu X; Jay M; Dziubla TD Drug Dev Ind Pharm; 2012 Oct; 38(10):1270-9. PubMed ID: 22235767 [TBL] [Abstract][Full Text] [Related]
4. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Soares S; Fonte P; Costa A; Andrade J; Seabra V; Ferreira D; Reis S; Sarmento B Int J Pharm; 2013 Nov; 456(2):370-81. PubMed ID: 24036086 [TBL] [Abstract][Full Text] [Related]
5. Development and optimization of solid lipid nanoparticles of amikacin by central composite design. Varshosaz J; Ghaffari S; Khoshayand MR; Atyabi F; Azarmi S; Kobarfard F J Liposome Res; 2010 Jun; 20(2):97-104. PubMed ID: 19621981 [TBL] [Abstract][Full Text] [Related]
6. [Freeze-drying of oleanolic acid-loaded nanosuspensions]. Zhao XL; Chen HB; Chen YJ; Yang XL Zhongguo Zhong Yao Za Zhi; 2007 Sep; 32(18):1874-6. PubMed ID: 18051893 [TBL] [Abstract][Full Text] [Related]
7. The effect of freeze-drying with different cryoprotectants and gamma-irradiation sterilization on the characteristics of ciprofloxacin HCl-loaded poly(D,L-lactide-glycolide) nanoparticles. Bozdag S; Dillen K; Vandervoort J; Ludwig A J Pharm Pharmacol; 2005 Jun; 57(6):699-707. PubMed ID: 15969924 [TBL] [Abstract][Full Text] [Related]
8. Freeze-dried nifedipine-lipid nanoparticles with long-term nano-dispersion stability after reconstitution. Ohshima H; Miyagishima A; Kurita T; Makino Y; Iwao Y; Sonobe T; Itai S Int J Pharm; 2009 Jul; 377(1-2):180-4. PubMed ID: 19446623 [TBL] [Abstract][Full Text] [Related]
9. Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: characterization and ability to bind the pEGFP-plasmid. Vighi E; Ruozi B; Montanari M; Battini R; Leo E Eur J Pharm Biopharm; 2007 Sep; 67(2):320-8. PubMed ID: 17368876 [TBL] [Abstract][Full Text] [Related]
10. Stability study perspective of the effect of freeze-drying using cryoprotectants on the structure of insulin loaded into PLGA nanoparticles. Fonte P; Soares S; Sousa F; Costa A; Seabra V; Reis S; Sarmento B Biomacromolecules; 2014 Oct; 15(10):3753-65. PubMed ID: 25180545 [TBL] [Abstract][Full Text] [Related]
11. Trehalose is not a universal solution for solid lipid nanoparticles freeze-drying. Doktorovova S; Shegokar R; Fernandes L; Martins-Lopes P; Silva AM; Müller RH; Souto EB Pharm Dev Technol; 2014 Dec; 19(8):922-9. PubMed ID: 24099511 [TBL] [Abstract][Full Text] [Related]
12. Solid lipid nanoparticles as delivery systems for Gambogenic acid. Huang X; Chen YJ; Peng DY; Li QL; Wang XS; Wang DL; Chen WD Colloids Surf B Biointerfaces; 2013 Feb; 102():391-7. PubMed ID: 23010123 [TBL] [Abstract][Full Text] [Related]
13. Freeze drying of human serum albumin (HSA) nanoparticles with different excipients. Anhorn MG; Mahler HC; Langer K Int J Pharm; 2008 Nov; 363(1-2):162-9. PubMed ID: 18672043 [TBL] [Abstract][Full Text] [Related]
14. Spray-freeze-drying production of thermally sensitive polymeric nanoparticle aggregates for inhaled drug delivery: effect of freeze-drying adjuvants. Cheow WS; Ng ML; Kho K; Hadinoto K Int J Pharm; 2011 Feb; 404(1-2):289-300. PubMed ID: 21093560 [TBL] [Abstract][Full Text] [Related]
15. Optimization of the different phases of the freeze-drying process of solid lipid nanoparticles using experimental designs. Elbrink K; Van Hees S; Holm R; Kiekens F Int J Pharm; 2023 Mar; 635():122717. PubMed ID: 36781084 [TBL] [Abstract][Full Text] [Related]
16. Freeze drying optimization of polymeric nanoparticles for ocular flurbiprofen delivery: effect of protectant agents and critical process parameters on long-term stability. Ramos Yacasi GR; Calpena Campmany AC; Egea Gras MA; Espina García M; García López ML Drug Dev Ind Pharm; 2017 Apr; 43(4):637-651. PubMed ID: 28044462 [TBL] [Abstract][Full Text] [Related]
17. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Das S; Ng WK; Kanaujia P; Kim S; Tan RB Colloids Surf B Biointerfaces; 2011 Nov; 88(1):483-9. PubMed ID: 21831615 [TBL] [Abstract][Full Text] [Related]
18. Process optimization of a novel production method for nanosuspensions using design of experiments (DoE). Salazar J; Heinzerling O; Müller RH; Möschwitzer JP Int J Pharm; 2011 Nov; 420(2):395-403. PubMed ID: 21925582 [TBL] [Abstract][Full Text] [Related]
19. [Freeze-drying of silymarin-loaded solid lipid nanoparticles (SM-SLN)]. He J; Feng JF; Zhang LL; Lu WG; Hou SX Zhongguo Zhong Yao Za Zhi; 2005 Jan; 30(2):110-2. PubMed ID: 15714812 [TBL] [Abstract][Full Text] [Related]
20. Preparation of griseofulvin nanoparticle suspension by high-pressure homogenization and preservation of the suspension with saccharides and sugar alcohols. Kamiya S; Kurita T; Miyagishima A; Arakawa M Drug Dev Ind Pharm; 2009 Aug; 35(8):1022-8. PubMed ID: 19466885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]