BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 21047383)

  • 1. Global protein interactome exploration through mining genome-scale data in Arabidopsis thaliana.
    Xu F; Li G; Zhao C; Li Y; Li P; Cui J; Deng Y; Shi T
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S2. PubMed ID: 21047383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The predicted Arabidopsis interactome resource and network topology-based systems biology analyses.
    Lin M; Zhou X; Shen X; Mao C; Chen X
    Plant Cell; 2011 Mar; 23(3):911-22. PubMed ID: 21441435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PAIR: the predicted Arabidopsis interactome resource.
    Lin M; Shen X; Chen X
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D1134-40. PubMed ID: 20952401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The potential of text mining in data integration and network biology for plant research: a case study on Arabidopsis.
    Van Landeghem S; De Bodt S; Drebert ZJ; Inzé D; Van de Peer Y
    Plant Cell; 2013 Mar; 25(3):794-807. PubMed ID: 23532071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AtPID: Arabidopsis thaliana protein interactome database--an integrative platform for plant systems biology.
    Cui J; Li P; Li G; Xu F; Zhao C; Li Y; Yang Z; Wang G; Yu Q; Li Y; Shi T
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D999-1008. PubMed ID: 17962307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kaleidoscopic view of the Arabidopsis core cell cycle interactome.
    Van Leene J; Boruc J; De Jaeger G; Russinova E; De Veylder L
    Trends Plant Sci; 2011 Mar; 16(3):141-50. PubMed ID: 21233003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A predicted interactome for Arabidopsis.
    Geisler-Lee J; O'Toole N; Ammar R; Provart NJ; Millar AH; Geisler M
    Plant Physiol; 2007 Oct; 145(2):317-29. PubMed ID: 17675552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactome-wide prediction of protein-protein binding sites reveals effects of protein sequence variation in Arabidopsis thaliana.
    Leal Valentim F; Neven F; Boyen P; van Dijk AD
    PLoS One; 2012; 7(10):e47022. PubMed ID: 23077539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for network evolution in an Arabidopsis interactome map.
    Arabidopsis Interactome Mapping Consortium
    Science; 2011 Jul; 333(6042):601-7. PubMed ID: 21798944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deciphering the Arabidopsis floral transition process by integrating a protein-protein interaction network and gene expression data.
    He F; Zhou Y; Zhang Z
    Plant Physiol; 2010 Aug; 153(4):1492-505. PubMed ID: 20530214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A framework of integrating gene relations from heterogeneous data sources: an experiment on Arabidopsis thaliana.
    Li J; Li X; Su H; Chen H; Galbraith DW
    Bioinformatics; 2006 Aug; 22(16):2037-43. PubMed ID: 16820427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated approach (CLuster Analysis Integration Method) to combine expression data and protein-protein interaction networks in agrigenomics: application on Arabidopsis thaliana.
    Santoni D; Swiercz A; Zmieńko A; Kasprzak M; Blazewicz M; Bertolazzi P; Felici G
    OMICS; 2014 Feb; 18(2):155-65. PubMed ID: 24404838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ThaleMine: A Warehouse for Arabidopsis Data Integration and Discovery.
    Krishnakumar V; Contrino S; Cheng CY; Belyaeva I; Ferlanti ES; Miller JR; Vaughn MW; Micklem G; Town CD; Chan AP
    Plant Cell Physiol; 2017 Jan; 58(1):e4. PubMed ID: 28013278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data integration for plant genomics--exemplars from the integration of Arabidopsis thaliana databases.
    Lysenko A; Hindle MM; Taubert J; Saqi M; Rawlings CJ
    Brief Bioinform; 2009 Nov; 10(6):676-93. PubMed ID: 19933213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression.
    De Bodt S; Proost S; Vandepoele K; Rouzé P; Van de Peer Y
    BMC Genomics; 2009 Jun; 10():288. PubMed ID: 19563678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PRIN: a predicted rice interactome network.
    Gu H; Zhu P; Jiao Y; Meng Y; Chen M
    BMC Bioinformatics; 2011 May; 12():161. PubMed ID: 21575196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analyses of stress-responsive genes in Arabidopsis thaliana: insight from genomic data mining, functional enrichment, pathway analysis and phenomics.
    Naika M; Shameer K; Sowdhamini R
    Mol Biosyst; 2013 Jul; 9(7):1888-908. PubMed ID: 23645342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LAITOR4HPC: A text mining pipeline based on HPC for building interaction networks.
    Piereck B; Oliveira-Lima M; Benko-Iseppon AM; Diehl S; Schneider R; Brasileiro-Vidal AC; Barbosa-Silva A
    BMC Bioinformatics; 2020 Aug; 21(1):365. PubMed ID: 32838742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse-engineering the Arabidopsis thaliana transcriptional network under changing environmental conditions.
    Carrera J; Rodrigo G; Jaramillo A; Elena SF
    Genome Biol; 2009; 10(9):R96. PubMed ID: 19754933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors.
    de Folter S; Immink RG; Kieffer M; Parenicová L; Henz SR; Weigel D; Busscher M; Kooiker M; Colombo L; Kater MM; Davies B; Angenent GC
    Plant Cell; 2005 May; 17(5):1424-33. PubMed ID: 15805477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.