These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 21047424)
1. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species. Leonard SS; Chen BT; Stone SG; Schwegler-Berry D; Kenyon AJ; Frazer D; Antonini JM Part Fibre Toxicol; 2010 Nov; 7():32. PubMed ID: 21047424 [TBL] [Abstract][Full Text] [Related]
2. Persistence of deposited metals in the lungs after stainless steel and mild steel welding fume inhalation in rats. Antonini JM; Roberts JR; Stone S; Chen BT; Schwegler-Berry D; Chapman R; Zeidler-Erdely PC; Andrews RN; Frazer DG Arch Toxicol; 2011 May; 85(5):487-98. PubMed ID: 20924559 [TBL] [Abstract][Full Text] [Related]
3. High variability in toxicity of welding fume nanoparticles from stainless steel in lung cells and reporter cell lines: the role of particle reactivity and solubility. McCarrick S; Wei Z; Moelijker N; Derr R; Persson KA; Hendriks G; Odnevall Wallinder I; Hedberg Y; Karlsson HL Nanotoxicology; 2019 Dec; 13(10):1293-1309. PubMed ID: 31418618 [TBL] [Abstract][Full Text] [Related]
4. Effect of stainless steel manual metal arc welding fume on free radical production, DNA damage, and apoptosis induction. Antonini JM; Leonard SS; Roberts JR; Solano-Lopez C; Young SH; Shi X; Taylor MD Mol Cell Biochem; 2005 Nov; 279(1-2):17-23. PubMed ID: 16283511 [TBL] [Abstract][Full Text] [Related]
5. A comparison of cytotoxicity and oxidative stress from welding fumes generated with a new nickel-, copper-based consumable versus mild and stainless steel-based welding in RAW 264.7 mouse macrophages. Badding MA; Fix NR; Antonini JM; Leonard SS PLoS One; 2014; 9(6):e101310. PubMed ID: 24977413 [TBL] [Abstract][Full Text] [Related]
6. Effect of welding fume solubility on lung macrophage viability and function in vitro. Antonini JM; Lawryk NJ; Murthy GG; Brain JD J Toxicol Environ Health A; 1999 Nov; 58(6):343-63. PubMed ID: 10580758 [TBL] [Abstract][Full Text] [Related]
7. Toxicity of stainless and mild steel particles generated from gas-metal arc welding in primary human small airway epithelial cells. Cediel-Ulloa A; Isaxon C; Eriksson A; Primetzhofer D; Sortica MA; Haag L; Derr R; Hendriks G; Löndahl J; Gudmundsson A; Broberg K; Gliga AR Sci Rep; 2021 Nov; 11(1):21846. PubMed ID: 34750422 [TBL] [Abstract][Full Text] [Related]
8. Response of the mouse lung transcriptome to welding fume: effects of stainless and mild steel fumes on lung gene expression in A/J and C57BL/6J mice. Zeidler-Erdely PC; Kashon ML; Li S; Antonini JM Respir Res; 2010 Jun; 11(1):70. PubMed ID: 20525249 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the molecular mechanisms associated with cytotoxicity and inflammation after pulmonary exposure to different metal-rich welding particles. Shoeb M; Kodali V; Farris B; Bishop LM; Meighan T; Salmen R; Eye T; Roberts JR; Zeidler-Erdely P; Erdely A; Antonini JM Nanotoxicology; 2017 Aug; 11(6):725-736. PubMed ID: 28660804 [TBL] [Abstract][Full Text] [Related]
10. A novel method for assessing respiratory deposition of welding fume nanoparticles. Cena LG; Keane MJ; Chisholm WP; Stone S; Harper M; Chen BT J Occup Environ Hyg; 2014; 11(12):771-80. PubMed ID: 24824154 [TBL] [Abstract][Full Text] [Related]
11. Mild steel and stainless steel welding fumes elicit pro-inflammatory and pro-oxidant effects in first trimester trophoblast cells. Olgun NS; Morris AM; Bowers LN; Stefaniak AB; Friend SA; Reznik SE; Leonard SS Am J Reprod Immunol; 2020 Apr; 83(4):e13221. PubMed ID: 31943498 [TBL] [Abstract][Full Text] [Related]
12. Estimation of regional pulmonary deposition and exposure for fumes from SMAW and GMAW mild and stainless steel consumables. Hewett P Am Ind Hyg Assoc J; 1995 Feb; 56(2):136-42. PubMed ID: 7856514 [TBL] [Abstract][Full Text] [Related]
13. Design, construction, and characterization of a novel robotic welding fume generator and inhalation exposure system for laboratory animals. Antonini JM; Afshari AA; Stone S; Chen B; Schwegler-Berry D; Fletcher WG; Goldsmith WT; Vandestouwe KH; McKinney W; Castranova V; Frazer DG J Occup Environ Hyg; 2006 Apr; 3(4):194-203; quiz D45. PubMed ID: 16531292 [TBL] [Abstract][Full Text] [Related]
14. Comparative microscopic study of human and rat lungs after overexposure to welding fume. Antonini JM; Roberts JR; Schwegler-Berry D; Mercer RR Ann Occup Hyg; 2013 Nov; 57(9):1167-79. PubMed ID: 23798603 [TBL] [Abstract][Full Text] [Related]
15. Changes in blood manganese concentration and MRI t1 relaxation time during 180 days of stainless steel welding-fume exposure in cynomolgus monkeys. Sung JH; Kim CY; Yang SO; Khang HS; Cheong HK; Lee JS; Song CW; Park JD; Han JH; Chung YH; Choi BS; Kwon IH; Cho MH; Yu IJ Inhal Toxicol; 2007 Jan; 19(1):47-55. PubMed ID: 17127642 [TBL] [Abstract][Full Text] [Related]
17. Lung fibrosis in Sprague-Dawley rats, induced by exposure to manual metal arc-stainless steel welding fumes. Yu IJ; Song KS; Chang HK; Han JH; Kim KJ; Chung YH; Maeng SH; Park SH; Han KT; Chung KH; Chung HK Toxicol Sci; 2001 Sep; 63(1):99-106. PubMed ID: 11509749 [TBL] [Abstract][Full Text] [Related]
18. Effect of short-term stainless steel welding fume inhalation exposure on lung inflammation, injury, and defense responses in rats. Antonini JM; Stone S; Roberts JR; Chen B; Schwegler-Berry D; Afshari AA; Frazer DG Toxicol Appl Pharmacol; 2007 Sep; 223(3):234-45. PubMed ID: 17706736 [TBL] [Abstract][Full Text] [Related]
19. Fume particle size distribution and fume generation rate during arc welding of cast iron. Takahashi J; Nakashima H; Fujii N Ind Health; 2020 Aug; 58(4):325-334. PubMed ID: 31932524 [TBL] [Abstract][Full Text] [Related]
20. Effects of welding fumes of differing composition and solubility on free radical production and acute lung injury and inflammation in rats. Taylor MD; Roberts JR; Leonard SS; Shi X; Antonini JM Toxicol Sci; 2003 Sep; 75(1):181-91. PubMed ID: 12832661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]