These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 2104757)
1. The sulfhydryl content of L-threonine dehydrogenase from Escherichia coli K-12: relation to catalytic activity and Mn2+ activation. Craig PA; Dekker EE Biochim Biophys Acta; 1990 Jan; 1037(1):30-8. PubMed ID: 2104757 [TBL] [Abstract][Full Text] [Related]
2. Cd2+ activation of L-threonine dehydrogenase from Escherichia coli K-12. Craig PA; Dekker EE Biochim Biophys Acta; 1988 Nov; 957(2):222-9. PubMed ID: 3056527 [TBL] [Abstract][Full Text] [Related]
3. L-threonine dehydrogenase from Escherichia coli K-12: thiol-dependent activation by Mn2+. Craig PA; Dekker EE Biochemistry; 1986 Apr; 25(8):1870-6. PubMed ID: 3518793 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of Escherichia coli L-threonine dehydrogenase by 2,3-butanedione. Evidence for a catalytically essential arginine residue. Epperly BR; Dekker EE J Biol Chem; 1989 Nov; 264(31):18296-301. PubMed ID: 2681195 [TBL] [Abstract][Full Text] [Related]
5. Determination of dissociation constants for enzyme-reactant complexes for NAD-malic enzyme by modulation of the thiol inactivation rate. Kiick DM; Allen BL; Rao JG; Harris BG; Cook PF Biochemistry; 1984 Nov; 23(23):5454-9. PubMed ID: 6509029 [TBL] [Abstract][Full Text] [Related]
6. Probing the active site of Tritrichomonas foetus hypoxanthine-guanine-xanthine phosphoribosyltransferase using covalent modification of cysteine residues. Kanaani J; Somoza JR; Maltby D; Wang CC Eur J Biochem; 1996 Aug; 239(3):764-72. PubMed ID: 8774725 [TBL] [Abstract][Full Text] [Related]
7. Identification of a second active site residue in Escherichia coli L-threonine dehydrogenase: methylation of histidine-90 with methyl p-nitrobenzenesulfonate. Marcus JP; Dekker EE Arch Biochem Biophys; 1995 Jan; 316(1):413-20. PubMed ID: 7840645 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of histidine-90 in Escherichia coli L-threonine dehydrogenase alters its substrate specificity. Johnson AR; Dekker EE Arch Biochem Biophys; 1998 Mar; 351(1):8-16. PubMed ID: 9500838 [TBL] [Abstract][Full Text] [Related]
9. Studies on regulatory functions of malic enzymes. IV. Effects of sulfhydryl group modification on the catalytic function of NAD-linked malic enzyme from Escherichia coli. Yamaguchi M J Biochem; 1979 Aug; 86(2):325-33. PubMed ID: 225306 [TBL] [Abstract][Full Text] [Related]
10. The reactions of Escherichia coli citrate synthase with the sulfhydryl reagents 5,5'-dithiobis-(2-nitrobenzoic acid) and 4,4'-dithiodipyridine. Talgoy MM; Bell AW; Duckworth HW Can J Biochem; 1979 Jun; 57(6):822-33. PubMed ID: 38891 [TBL] [Abstract][Full Text] [Related]
11. Woodward's reagent K inactivation of Escherichia coli L-threonine dehydrogenase: increased absorbance at 340-350 nm is due to modification of cysteine and histidine residues, not aspartate or glutamate carboxyl groups. Johnson AR; Dekker EE Protein Sci; 1996 Feb; 5(2):382-90. PubMed ID: 8745417 [TBL] [Abstract][Full Text] [Related]
12. Microbial metabolism of amino ketones. L-1-aminopropan-2-ol dehydrogenase and L-threonine dehydrogenase in Escherichia coli. Turner JM Biochem J; 1967 Jul; 104(1):112-21. PubMed ID: 5340733 [TBL] [Abstract][Full Text] [Related]
13. Reactivity of sulfhydryl groups of the catalytic subunits of rabbit skeletal muscle protein phosphatases 1 and 2A. Nemani R; Lee EY Arch Biochem Biophys; 1993 Jan; 300(1):24-9. PubMed ID: 8380964 [TBL] [Abstract][Full Text] [Related]
14. Selective carboxymethylation of cysteine-174 of the beta 2 beta 2 and beta 1 beta 1 human liver alcohol dehydrogenase isoenzymes by iodoacetate. Bosron WF; Yin SJ; Dwulet FE; Li TK Biochemistry; 1986 Apr; 25(8):1876-81. PubMed ID: 2939875 [TBL] [Abstract][Full Text] [Related]
15. Carboxymethylation of thiol groups in ovalbumin: implications for proteins that contain both thiol and disulfide groups. Webster DM; Thompson EO Aust J Biol Sci; 1982; 35(2):125-35. PubMed ID: 7126053 [TBL] [Abstract][Full Text] [Related]
16. Activation of Sulfolobus solfataricus alcohol dehydrogenase by modification of cysteine residue 38 with iodoacetic acid. Raia CA; Caruso C; Marino M; Vespa N; Rossi M Biochemistry; 1996 Jan; 35(2):638-47. PubMed ID: 8555238 [TBL] [Abstract][Full Text] [Related]
17. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W. Iwakura M; Tokushige M; Katsuki H J Biochem; 1979 Nov; 86(5):1239-49. PubMed ID: 42642 [TBL] [Abstract][Full Text] [Related]
18. The role of cysteine residues in the catalytic activity of glycerol-3-phosphate dehydrogenase. Smith RE; MacQuarrie R Biochim Biophys Acta; 1979 Apr; 567(2):269-77. PubMed ID: 36150 [TBL] [Abstract][Full Text] [Related]
19. Active-site modification of native and mutant forms of inosine 5'-monophosphate dehydrogenase from Escherichia coli K12. Gilbert HJ; Drabble WT Biochem J; 1980 Nov; 191(2):533-41. PubMed ID: 6112982 [TBL] [Abstract][Full Text] [Related]
20. Homoserine dehydrogenase: spontaneous reactivation by dissociation of p-mercuribenzoate from an inactive enzyme--p-mercuribenzoate complex. Epstein CC; Datta P Proc Natl Acad Sci U S A; 1977 Nov; 74(11):4862-6. PubMed ID: 270718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]