These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21047667)

  • 41. Effect of different soil textures on leaching potential and degradation of pesticides in biobeds.
    Fogg P; Boxall AB; Walker A; Jukes A
    J Agric Food Chem; 2004 Sep; 52(18):5643-52. PubMed ID: 15373405
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanistic insights into the role of river sediment in the attenuation of the herbicide isoproturon.
    Trinh SB; Hiscock KM; Reid BJ
    Environ Pollut; 2012 Nov; 170():95-101. PubMed ID: 22771356
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Diazinon dissipation in pesticide-contaminated paddy soil: kinetic modeling and isolation of a degrading mixed bacterial culture.
    Torabi E; Talebi K; Pourbabaei A; Ahmadzadeh M
    Environ Sci Pollut Res Int; 2017 Feb; 24(4):4117-4133. PubMed ID: 27933498
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biodegradation of diazinon by Serratia marcescens DI101 and its use in bioremediation of contaminated environment.
    Abo-Amer A
    J Microbiol Biotechnol; 2011 Jan; 21(1):71-80. PubMed ID: 21301195
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Use of toxicity identification evaluations to determine the pesticide mitigation effectiveness of on-farm vegetated treatment systems.
    Hunt J; Anderson B; Phillips B; Tjeerdema R; Largay B; Beretti M; Bern A
    Environ Pollut; 2008 Nov; 156(2):348-58. PubMed ID: 18358576
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of charcoal amendment on adsorption, leaching and degradation of isoproturon in soils.
    Si Y; Wang M; Tian C; Zhou J; Zhou D
    J Contam Hydrol; 2011 Apr; 123(1-2):75-81. PubMed ID: 21237529
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application of microbial hot spots enhances pesticide degradation in soils.
    Grundmann S; Fuss R; Schmid M; Laschinger M; Ruth B; Schulin R; Munch JC; Schroll R
    Chemosphere; 2007 Jun; 68(3):511-7. PubMed ID: 17291565
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ageing processes and soil microbial community effects on the biodegradation of soil (13)C-2,4-D nonextractable residues.
    Lerch TZ; Dignac MF; Nunan N; Barriuso E; Mariotti A
    Environ Pollut; 2009 Nov; 157(11):2985-93. PubMed ID: 19564065
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effects of soil variability and weather conditions on pesticide leaching--a farm-level evaluation.
    van Alphen BJ; Stoorvogel JJ
    J Environ Qual; 2002; 31(3):797-805. PubMed ID: 12026082
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of temperature and water content on degradation of isoproturon in three soil profiles.
    Alletto L; Coquet Y; Benoit P; Bergheaud V
    Chemosphere; 2006 Aug; 64(7):1053-61. PubMed ID: 16426661
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns.
    Dousset S; Thevenot M; Pot V; Simunek J; Andreux F
    J Contam Hydrol; 2007 Dec; 94(3-4):261-76. PubMed ID: 17698243
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lysimeter study to investigate the effect of rainfall patterns on leaching of isoproturon.
    Beulke S; Brown CD; Fryer CJ; Walker A
    Pest Manag Sci; 2002 Jan; 58(1):45-53. PubMed ID: 11838284
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Formation of non-extractable pesticide residues: observations on compound differences, measurement and regulatory issues.
    Mordaunt CJ; Gevao B; Jones KC; Semple KT
    Environ Pollut; 2005 Jan; 133(1):25-34. PubMed ID: 15327853
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Determination of time-dependent partition coefficients for several pesticides using diffusion theory.
    Renaud FG; Leeds-Harrison PB; Brown CD; van Beinum W
    Chemosphere; 2004 Dec; 57(10):1525-35. PubMed ID: 15519397
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ mass distribution quotient (iMDQ) - a new factor to compare bioavailability of chemicals in soils?
    Folberth C; Scherb H; Suhadolc M; Munch JC; Schroll R
    Chemosphere; 2009 May; 75(6):707-13. PubMed ID: 19261321
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spatial variability in 14C-herbicide degradation in surface and subsurface soils.
    Charnay MP; Tuis S; Coquet Y; Barriuso E
    Pest Manag Sci; 2005 Sep; 61(9):845-55. PubMed ID: 16003827
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A comparison of five pesticides adsorption and desorption processes in thirteen contrasting field soils.
    Boivin A; Cherrier R; Schiavon M
    Chemosphere; 2005 Nov; 61(5):668-76. PubMed ID: 16219503
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leaching of pesticides through normal-tillage and low-tillage soil--a lysimeter study. I. Isoproturon.
    Fomsgaard IS; Spliid NH; Felding G
    J Environ Sci Health B; 2003 Jan; 38(1):1-18. PubMed ID: 12602820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Fate and effects of diazinon.
    Larkin DJ; Tjeerdema RS
    Rev Environ Contam Toxicol; 2000; 166():49-82. PubMed ID: 10868076
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mycodegradation of diazinon pesticide utilizing fungal strains isolated from polluted soil.
    Abdel-Fattah Mostafa A; Yassin MT; Dawoud TM; Al-Otibi FO; Sayed SR
    Environ Res; 2022 Sep; 212(Pt C):113421. PubMed ID: 35568233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.