These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 21047733)

  • 1. Integration of visual and inertial cues in perceived heading of self-motion.
    de Winkel KN; Weesie J; Werkhoven PJ; Groen EL
    J Vis; 2010 Oct; 10(12):1. PubMed ID: 21047733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual contributions to human self-motion perception during horizontal body rotation.
    Mergner T; Schweigart G; Müller M; Hlavacka F; Becker W
    Arch Ital Biol; 2000 Apr; 138(2):139-66. PubMed ID: 10782255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of eye position during human visual-vestibular integration of heading perception.
    Crane BT
    J Neurophysiol; 2017 Sep; 118(3):1609-1621. PubMed ID: 28615328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal visual-vestibular integration under conditions of conflicting intersensory motion profiles.
    Butler JS; Campos JL; Bülthoff HH
    Exp Brain Res; 2015 Feb; 233(2):587-97. PubMed ID: 25361642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of visual path information on human heading perception during rotation.
    Li L; Chen J; Peng X
    J Vis; 2009 Mar; 9(3):29.1-14. PubMed ID: 19757968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian integration of visual and vestibular signals for heading.
    Butler JS; Smith ST; Campos JL; Bülthoff HH
    J Vis; 2010 Sep; 10(11):23. PubMed ID: 20884518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multisensory Integration of Visual and Vestibular Signals Improves Heading Discrimination in the Presence of a Moving Object.
    Dokka K; DeAngelis GC; Angelaki DE
    J Neurosci; 2015 Oct; 35(40):13599-607. PubMed ID: 26446214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-motion perception during conflicting visual-vestibular acceleration.
    Ishida M; Fushiki H; Nishida H; Watanabe Y
    J Vestib Res; 2008; 18(5-6):267-72. PubMed ID: 19542600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of range of heading differences on human visual-inertial heading estimation.
    Rodriguez R; Crane BT
    Exp Brain Res; 2019 May; 237(5):1227-1237. PubMed ID: 30847539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Humans can perceive heading without visual path information.
    Li L; Sweet BT; Stone LS
    J Vis; 2006 Aug; 6(9):874-81. PubMed ID: 17083281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of timing delay between visual and vestibular stimuli on heading perception.
    Rodriguez R; Crane BT
    J Neurophysiol; 2021 Jul; 126(1):304-312. PubMed ID: 34191637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear vection in virtual environments can be strengthened by discordant inertial input.
    Wright WG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1157-60. PubMed ID: 19963991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integration of visual and inertial cues in the perception of angular self-motion.
    de Winkel KN; Soyka F; Barnett-Cowan M; Bülthoff HH; Groen EL; Werkhoven PJ
    Exp Brain Res; 2013 Nov; 231(2):209-18. PubMed ID: 24013788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of stereo vision in visual-vestibular integration.
    Butler JS; Campos JL; Bülthoff HH; Smith ST
    Seeing Perceiving; 2011; 24(5):453-70. PubMed ID: 21888763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An earth-stationary perceived visual scene during roll and yaw motions in a flight simulator.
    van der Steen FA
    J Vestib Res; 1998; 8(6):411-25. PubMed ID: 9842511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-order orientation cues to the axis of motion.
    Badcock DR; Dickinson JE
    Vision Res; 2009 Feb; 49(3):407-15. PubMed ID: 19084034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vestibular heading discrimination and sensitivity to linear acceleration in head and world coordinates.
    MacNeilage PR; Banks MS; DeAngelis GC; Angelaki DE
    J Neurosci; 2010 Jul; 30(27):9084-94. PubMed ID: 20610742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal combination of form and motion cues in human heading perception.
    Niehorster DC; Cheng JC; Li L
    J Vis; 2010 Sep; 10(11):20. PubMed ID: 20884515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common causation and offset effects in human visual-inertial heading direction integration.
    Rodriguez R; Crane BT
    J Neurophysiol; 2020 Apr; 123(4):1369-1379. PubMed ID: 32130052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.