BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 21047793)

  • 1. Genetic inactivation of Kcnj16 identifies Kir5.1 as an important determinant of neuronal PCO2/pH sensitivity.
    D'Adamo MC; Shang L; Imbrici P; Brown SD; Pessia M; Tucker SJ
    J Biol Chem; 2011 Jan; 286(1):192-8. PubMed ID: 21047793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Respiratory responses to hypercapnia and hypoxia in mice with genetic ablation of Kir5.1 (Kcnj16).
    Trapp S; Tucker SJ; Gourine AV
    Exp Physiol; 2011 Apr; 96(4):451-9. PubMed ID: 21239463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of kir4.1 and kir5.1 by hypercapnia and intracellular acidosis.
    Xu H; Cui N; Yang Z; Qu Z; Jiang C
    J Physiol; 2000 May; 524 Pt 3(Pt 3):725-35. PubMed ID: 10790154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The disruption of central CO2 chemosensitivity in a mouse model of Rett syndrome.
    Zhang X; Su J; Cui N; Gai H; Wu Z; Jiang C
    Am J Physiol Cell Physiol; 2011 Sep; 301(3):C729-38. PubMed ID: 21307341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic mutation of Kcnj16 identifies Kir5.1-containing channels as key regulators of acute and chronic pH homeostasis.
    Puissant MM; Muere C; Levchenko V; Manis AD; Martino P; Forster HV; Palygin O; Staruschenko A; Hodges MR
    FASEB J; 2019 Apr; 33(4):5067-5075. PubMed ID: 30605394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats.
    Wu J; Xu H; Shen W; Jiang C
    J Membr Biol; 2004 Feb; 197(3):179-91. PubMed ID: 15042349
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Poli G; Hasan S; Belia S; Cenciarini M; Tucker SJ; Imbrici P; Shehab S; Pessia M; Brancorsini S; D'Adamo MC
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34205849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome.
    Paulais M; Bloch-Faure M; Picard N; Jacques T; Ramakrishnan SK; Keck M; Sohet F; Eladari D; Houillier P; Lourdel S; Teulon J; Tucker SJ
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10361-6. PubMed ID: 21633011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1-Kir5.1 channels by CO2 and pH.
    Yang Z; Xu H; Cui N; Qu Z; Chanchevalap S; Shen W; Jiang C
    J Gen Physiol; 2000 Jul; 116(1):33-45. PubMed ID: 10871638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of Kir5.1 Impairs Renal Ability to Excrete Potassium during Increased Dietary Potassium Intake.
    Wu P; Gao ZX; Zhang DD; Su XT; Wang WH; Lin DH
    J Am Soc Nephrol; 2019 Aug; 30(8):1425-1438. PubMed ID: 31239388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of TRP channels in the CO₂ chemosensitivity of locus coeruleus neurons.
    Cui N; Zhang X; Tadepalli JS; Yu L; Gai H; Petit J; Pamulapati RT; Jin X; Jiang C
    J Neurophysiol; 2011 Jun; 105(6):2791-801. PubMed ID: 21430274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying Candidate Genes that Underlie Cellular pH Sensitivity in Serotonin Neurons Using Transcriptomics: A Potential Role for Kir5.1 Channels.
    Puissant MM; Mouradian GC; Liu P; Hodges MR
    Front Cell Neurosci; 2017; 11():34. PubMed ID: 28270749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the heteromeric Kir4.1-Kir5.1 channels by P(CO(2)) at physiological levels.
    Cui N; Giwa LR; Xu H; Rojas A; Abdulkadir L; Jiang C
    J Cell Physiol; 2001 Nov; 189(2):229-36. PubMed ID: 11598908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential pH sensitivity of Kir4.1 and Kir4.2 potassium channels and their modulation by heteropolymerisation with Kir5.1.
    Pessia M; Imbrici P; D'Adamo MC; Salvatore L; Tucker SJ
    J Physiol; 2001 Apr; 532(Pt 2):359-67. PubMed ID: 11306656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biallelic loss-of-function variants in KCNJ16 presenting with hypokalemic metabolic acidosis.
    Webb BD; Hotchkiss H; Prasun P; Gelb BD; Satlin L
    Eur J Hum Genet; 2021 Oct; 29(10):1566-1569. PubMed ID: 33840812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of the inwardly rectifying potassium channel, Kir5.1, and localization in renal tubular epithelia.
    Tucker SJ; Imbrici P; Salvatore L; D'Adamo MC; Pessia M
    J Biol Chem; 2000 Jun; 275(22):16404-7. PubMed ID: 10764726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of Kir4.1 and Kir5.1 inwardly rectifying potassium channels in oligodendrocytes, the myelinating cells of the CNS.
    Brasko C; Hawkins V; De La Rocha IC; Butt AM
    Brain Struct Funct; 2017 Jan; 222(1):41-59. PubMed ID: 26879293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astrocytes in the retrotrapezoid nucleus sense H+ by inhibition of a Kir4.1-Kir5.1-like current and may contribute to chemoreception by a purinergic mechanism.
    Wenker IC; Kréneisz O; Nishiyama A; Mulkey DK
    J Neurophysiol; 2010 Dec; 104(6):3042-52. PubMed ID: 20926613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current.
    Pineda J; Aghajanian GK
    Neuroscience; 1997 Apr; 77(3):723-43. PubMed ID: 9070748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inward rectifier K(+) channel at the basolateral membrane of the mouse distal convoluted tubule: similarities with Kir4-Kir5.1 heteromeric channels.
    Lourdel S; Paulais M; Cluzeaud F; Bens M; Tanemoto M; Kurachi Y; Vandewalle A; Teulon J
    J Physiol; 2002 Jan; 538(Pt 2):391-404. PubMed ID: 11790808
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.