BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 21047903)

  • 1. Cancer epigenetics: from disruption of differentiation programs to the emergence of cancer stem cells.
    Scaffidi P; Misteli T
    Cold Spring Harb Symp Quant Biol; 2010; 75():251-8. PubMed ID: 21047903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xenopatients 2.0: reprogramming the epigenetic landscapes of patient-derived cancer genomes.
    Menendez JA; Alarcón T; Corominas-Faja B; Cuyàs E; López-Bonet E; Martin AG; Vellon L
    Cell Cycle; 2014; 13(3):358-70. PubMed ID: 24406535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status in cancer cell reprogramming and its clinical implications.
    Izgi K; Canatan H; Iskender B
    J Cancer Res Clin Oncol; 2017 Mar; 143(3):371-383. PubMed ID: 27620745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induced pluripotent stem cell technology for dissecting the cancer epigenome.
    Semi K; Yamada Y
    Cancer Sci; 2015 Oct; 106(10):1251-6. PubMed ID: 26224327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenetics and Cancer Stem Cells: Unleashing, Hijacking, and Restricting Cellular Plasticity.
    Wainwright EN; Scaffidi P
    Trends Cancer; 2017 May; 3(5):372-386. PubMed ID: 28718414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallels between artificial reprogramming and the biogenesis of cancer stem cells: Involvement of lncRNAs.
    Rasmussen TP
    Semin Cancer Biol; 2019 Aug; 57():36-44. PubMed ID: 30273656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular reprogramming and cancer development.
    Semi K; Matsuda Y; Ohnishi K; Yamada Y
    Int J Cancer; 2013 Mar; 132(6):1240-8. PubMed ID: 23180619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. "Reprogram Enablement" as an Assay for Identifying Early Oncogenic Pathways by Their Ability to Allow Neoplastic Cells to Reacquire an Epiblast State.
    Kong Y; Gimple RC; McVicar RN; Hodges AP; Yin J; Liu Y; Zhan W; Snyder EY
    Stem Cell Reports; 2020 Sep; 15(3):761-775. PubMed ID: 32795421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming cancer cells to pluripotency: an experimental tool for exploring cancer epigenetics.
    Stricker S; Pollard S
    Epigenetics; 2014 Jun; 9(6):798-802. PubMed ID: 24686321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Obstacles in Renal Regenerative Medicine: Metabolic and Epigenetic Parallels Between Cellular Reprogramming and Kidney Cancer Oncogenesis.
    Lichner Z; Mac-Way F; Yousef GM
    Eur Urol Focus; 2019 Mar; 5(2):250-261. PubMed ID: 28847686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The miR-302-Mediated Induction of Pluripotent Stem Cells (iPSC): Multiple Synergistic Reprogramming Mechanisms.
    Ying SY; Fang W; Lin SL
    Methods Mol Biol; 2018; 1733():283-304. PubMed ID: 29435941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal carcinogen exposure induces cancer stem cell-like property through epigenetic reprograming: A novel mechanism of metal carcinogenesis.
    Wang Z; Yang C
    Semin Cancer Biol; 2019 Aug; 57():95-104. PubMed ID: 30641125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Common themes of dedifferentiation in somatic cell reprogramming and cancer.
    Daley GQ
    Cold Spring Harb Symp Quant Biol; 2008; 73():171-4. PubMed ID: 19150965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic regulation of somatic cell reprogramming.
    Wang Y; Bi Y; Gao S
    Curr Opin Genet Dev; 2017 Oct; 46():156-163. PubMed ID: 28823984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential application of cell reprogramming techniques for cancer research.
    Saito S; Lin YC; Nakamura Y; Eckner R; Wuputra K; Kuo KK; Lin CS; Yokoyama KK
    Cell Mol Life Sci; 2019 Jan; 76(1):45-65. PubMed ID: 30283976
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Dynamic Epigenetic Landscape of the Retina During Development, Reprogramming, and Tumorigenesis.
    Aldiri I; Xu B; Wang L; Chen X; Hiler D; Griffiths L; Valentine M; Shirinifard A; Thiagarajan S; Sablauer A; Barabas ME; Zhang J; Johnson D; Frase S; Zhou X; Easton J; Zhang J; Mardis ER; Wilson RK; Downing JR; Dyer MA;
    Neuron; 2017 May; 94(3):550-568.e10. PubMed ID: 28472656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and epigenetic reprogramming in the arsenic-induced cancer stem cells.
    Li L; Bi Z; Wadgaonkar P; Lu Y; Zhang Q; Fu Y; Thakur C; Wang L; Chen F
    Semin Cancer Biol; 2019 Aug; 57():10-18. PubMed ID: 31009762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer.
    Yamada Y; Haga H; Yamada Y
    Stem Cells Transl Med; 2014 Oct; 3(10):1182-7. PubMed ID: 25122691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of iPS cell technology to cancer epigenome study: uncovering the mechanism of cell status conversion for drug resistance in tumor.
    Matsuda Y; Semi K; Yamada Y
    Pathol Int; 2014 Jul; 64(7):299-308. PubMed ID: 25047500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetics of cellular reprogramming.
    Krishnakumar R; Blelloch RH
    Curr Opin Genet Dev; 2013 Oct; 23(5):548-55. PubMed ID: 23948105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.