BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 21048060)

  • 1. Variable dietary management of methylmalonic acidemia: metabolic and energetic correlations.
    Hauser NS; Manoli I; Graf JC; Sloan J; Venditti CP
    Am J Clin Nutr; 2011 Jan; 93(1):47-56. PubMed ID: 21048060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical reappraisal of dietary practices in methylmalonic acidemia raises concerns about the safety of medical foods. Part 1: isolated methylmalonic acidemias.
    Manoli I; Myles JG; Sloan JL; Shchelochkov OA; Venditti CP
    Genet Med; 2016 Apr; 18(4):386-95. PubMed ID: 26270765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Relationship between Dietary Intake, Growth, and Body Composition in Inborn Errors of Intermediary Protein Metabolism.
    Evans M; Truby H; Boneh A
    J Pediatr; 2017 Sep; 188():163-172. PubMed ID: 28629683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resting energy expenditure in disorders of propionate metabolism.
    Feillet F; Bodamer OA; Dixon MA; Sequeira S; Leonard JV
    J Pediatr; 2000 May; 136(5):659-63. PubMed ID: 10802500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact on Isoleucine and Valine Supplementation When Decreasing Use of Medical Food in the Nutritional Management of Methylmalonic Acidemia.
    Bernstein LE; Burns C; Drumm M; Gaughan S; Sailer M; Baker PR
    Nutrients; 2020 Feb; 12(2):. PubMed ID: 32069872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased plasma l-arginine levels in organic acidurias (MMA and PA) and decreased plasma branched-chain amino acid levels in urea cycle disorders as a potential cause of growth retardation: Options for treatment.
    Molema F; Gleich F; Burgard P; van der Ploeg AT; Summar ML; Chapman KA; Lund AM; Rizopoulos D; Kölker S; Williams M;
    Mol Genet Metab; 2019 Apr; 126(4):397-405. PubMed ID: 30827756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validation of predictive equations for resting energy expenditure in obese adolescents.
    Hofsteenge GH; Chinapaw MJ; Delemarre-van de Waal HA; Weijs PJ
    Am J Clin Nutr; 2010 May; 91(5):1244-54. PubMed ID: 20237141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validity of predictive equations for resting energy expenditure according to the body mass index in a population of 1726 patients followed in a Nutrition Unit.
    Jésus P; Achamrah N; Grigioni S; Charles J; Rimbert A; Folope V; Petit A; Déchelotte P; Coëffier M
    Clin Nutr; 2015 Jun; 34(3):529-35. PubMed ID: 25016971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resting energy expenditure (REE) in six- to seventeen-year-old Japanese children and adolescents.
    Kaneko K; Ito C; Koizumi K; Watanabe S; Umeda Y; Ishikawa-Takata K
    J Nutr Sci Vitaminol (Tokyo); 2013; 59(4):299-309. PubMed ID: 24064730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal Muscular Atrophy, types I and II: What are the differences in body composition and resting energy expenditure?
    Bertoli S; De Amicis R; Mastella C; Pieri G; Giaquinto E; Battezzati A; Leone A; Baranello G
    Clin Nutr; 2017 Dec; 36(6):1674-1680. PubMed ID: 27890489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluating the predictive factors of resting energy expenditure and validating predictive equations for Chinese obese children.
    Zhang L; Chen R; Li R; Chen MY; Huang R; Li XN
    World J Pediatr; 2018 Apr; 14(2):160-167. PubMed ID: 29516391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. No consistent evidence of a disproportionately low resting energy expenditure in long-term successful weight-loss maintainers.
    Ostendorf DM; Melanson EL; Caldwell AE; Creasy SA; Pan Z; MacLean PS; Wyatt HR; Hill JO; Catenacci VA
    Am J Clin Nutr; 2018 Oct; 108(4):658-666. PubMed ID: 30321282
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dietary practices in methylmalonic acidaemia: a European survey.
    Pinto A; Evans S; Daly A; Almeida MF; Assoun M; Belanger-Quintana A; Bernabei SM; Bollhalder S; Cassiman D; Champion H; Chan H; Corthouts K; Dalmau J; Boer F; Laet C; Meyer A; Desloovere A; Dianin A; Dixon M; Dokoupil K; Dubois S; Eyskens F; Faria A; Fasan I; Favre E; Feillet F; Fekete A; Gallo G; Gingell C; Gribben J; Hansen KK; Horst NT; Jankowski C; Janssen-Regelink R; Jones I; Jouault C; Kahrs GE; Kok I; Kowalik A; Laguerre C; Verge SL; Liguori A; Lilje R; Maddalon C; Mayr D; Meyer U; Micciche A; Och U; Robert M; Rocha JC; Rogozinski H; Rohde C; Ross K; Saruggia I; Schlune A; Singleton K; Sjoqvist E; Skeath R; Stolen LH; Terry A; Timmer C; Tomlinson L; Tooke A; Kerckhove KV; van Dam E; Hurk DVD; Ploeg LV; van Driessche M; van Rijn M; Wegberg AV; Vasconcelos C; Vestergaard H; Vitoria I; Webster D; White F; White L; Zweers H; MacDonald A
    J Pediatr Endocrinol Metab; 2020 Jan; 33(1):147-155. PubMed ID: 31846426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Doubling diet fat on sugar ratio in children with mitochondrial OXPHOS disorders: Effects of a randomized trial on resting energy expenditure, diet induced thermogenesis and body composition.
    Béghin L; Coopman S; Schiff M; Vamecq J; Mention-Mulliez K; Hankard R; Cuisset JM; Ogier H; Gottrand F; Dobbelaere D
    Clin Nutr; 2016 Dec; 35(6):1414-1422. PubMed ID: 27173380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early Protein Intake Is Associated with Body Composition and Resting Energy Expenditure in Young Adults Born with Very Low Birth Weight.
    Matinolli HM; Hovi P; Männistö S; Sipola-Leppänen M; Eriksson JG; Mäkitie O; Järvenpää AL; Andersson S; Kajantie E
    J Nutr; 2015 Sep; 145(9):2084-91. PubMed ID: 26180246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Resting energy expenditure measured vs. estimated and this relationship with body composition in women].
    Fett CA; Fett WC; Marchini JS
    Arq Bras Endocrinol Metabol; 2006 Dec; 50(6):1050-8. PubMed ID: 17221111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delineating the clinical spectrum of isolated methylmalonic acidurias: cblA and mut.
    Hörster F; Tuncel AT; Gleich F; Plessl T; Froese SD; Garbade SF; Kölker S; Baumgartner MR;
    J Inherit Metab Dis; 2021 Jan; 44(1):193-214. PubMed ID: 32754920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Total energy expenditure in patients with colorectal cancer: associations with body composition, physical activity, and energy recommendations.
    Purcell SA; Elliott SA; Walter PJ; Preston T; Cai H; Skipworth RJE; Sawyer MB; Prado CM
    Am J Clin Nutr; 2019 Aug; 110(2):367-376. PubMed ID: 31225583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Pseudomonas colonization on body composition and resting energy expenditure in children with cystic fibrosis.
    Vinton NE; Padman R; Davis M; Harcke HT
    JPEN J Parenter Enteral Nutr; 1999; 23(4):233-6. PubMed ID: 10421394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of resting energy expenditure in a large population of obese children.
    Derumeaux-Burel H; Meyer M; Morin L; Boirie Y
    Am J Clin Nutr; 2004 Dec; 80(6):1544-50. PubMed ID: 15585766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.