BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21048194)

  • 1. Probing the efficiency of proteolytic events by positional proteomics.
    Plasman K; Van Damme P; Kaiserman D; Impens F; Demeyer K; Helsens K; Goethals M; Bird PI; Vandekerckhove J; Gevaert K
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.003301. PubMed ID: 21048194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of extended protease substrate recognition motifs in steering BNIP-2 cleavage by human and mouse granzymes B.
    Van Damme P; Plasman K; Vandemoortele G; Jonckheere V; Maurer-Stroh S; Gevaert K
    BMC Biochem; 2014 Sep; 15():21. PubMed ID: 25208769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of protein processing by N-terminal proteomics reveals novel species-specific substrate determinants of granzyme B orthologs.
    Van Damme P; Maurer-Stroh S; Plasman K; Van Durme J; Colaert N; Timmerman E; De Bock PJ; Goethals M; Rousseau F; Schymkowitz J; Vandekerckhove J; Gevaert K
    Mol Cell Proteomics; 2009 Feb; 8(2):258-72. PubMed ID: 18836177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine.
    Eckhard U; Marino G; Butler GS; Overall CM
    Biochimie; 2016 Mar; 122():110-8. PubMed ID: 26542287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrate specificities of the granzyme tryptases A and K.
    Plasman K; Demol H; Bird PI; Gevaert K; Van Damme P
    J Proteome Res; 2014 Dec; 13(12):6067-77. PubMed ID: 25383893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The substrate specificity profile of human granzyme A.
    Van Damme P; Maurer-Stroh S; Hao H; Colaert N; Timmerman E; Eisenhaber F; Vandekerckhove J; Gevaert K
    Biol Chem; 2010 Aug; 391(8):983-97. PubMed ID: 20536382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple, scalable, and ultrasensitive tip-based identification of protease substrates.
    Shema G; Nguyen MTN; Solari FA; Loroch S; Venne AS; Kollipara L; Sickmann A; Verhelst SHL; Zahedi RP
    Mol Cell Proteomics; 2018 Apr; 17(4):826-834. PubMed ID: 29358340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic discovery of protease substrates.
    Schilling O; Overall CM
    Curr Opin Chem Biol; 2007 Feb; 11(1):36-45. PubMed ID: 17194619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protease Substrate Profiling by N-Terminal COFRADIC.
    Staes A; Van Damme P; Timmerman E; Ruttens B; Stes E; Gevaert K; Impens F
    Methods Mol Biol; 2017; 1574():51-76. PubMed ID: 28315243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selecting protein N-terminal peptides by combined fractional diagonal chromatography.
    Staes A; Impens F; Van Damme P; Ruttens B; Goethals M; Demol H; Timmerman E; Vandekerckhove J; Gevaert K
    Nat Protoc; 2011 Jul; 6(8):1130-41. PubMed ID: 21799483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of proteolytic products and natural protein N-termini by Terminal Amine Isotopic Labeling of Substrates (TAILS).
    Doucet A; Kleifeld O; Kizhakkedathu JN; Overall CM
    Methods Mol Biol; 2011; 753():273-87. PubMed ID: 21604129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis.
    Van Damme P; Martens L; Van Damme J; Hugelier K; Staes A; Vandekerckhove J; Gevaert K
    Nat Methods; 2005 Oct; 2(10):771-7. PubMed ID: 16179924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease specificity profiling by tandem mass spectrometry using proteome-derived peptide libraries.
    Schilling O; auf dem Keller U; Overall CM
    Methods Mol Biol; 2011; 753():257-72. PubMed ID: 21604128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Profiling of Protease Cleavage Sites by Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Chen CY; Mayer B; Schilling O
    Methods Mol Biol; 2017; 1574():197-204. PubMed ID: 28315252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of protease proteomics to discover granzyme B substrates.
    Bredemeyer AJ; Townsend RR; Ley TJ
    Immunol Res; 2005; 32(1-3):143-53. PubMed ID: 16106065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Carboxypeptidase Substrates by C-Terminal COFRADIC.
    Tanco S; Aviles FX; Gevaert K; Lorenzo J; Van Damme P
    Methods Mol Biol; 2017; 1574():115-133. PubMed ID: 28315247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Profiling of the Cleavage Specificity and Human Substrates of Snake Venom Metalloprotease HF3 by Proteomic Identification of Cleavage Site Specificity (PICS) Using Proteome Derived Peptide Libraries and Terminal Amine Isotopic Labeling of Substrates (TAILS) N-Terminomics.
    Zelanis A; Oliveira AK; Prudova A; Huesgen PF; Tashima AK; Kizhakkedathu J; Overall CM; Serrano SMT
    J Proteome Res; 2019 Sep; 18(9):3419-3428. PubMed ID: 31337208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Holistic view on the extended substrate specificities of orthologous granzymes.
    Plasman K; Maurer-Stroh S; Gevaert K; Van Damme P
    J Proteome Res; 2014 Apr; 13(4):1785-93. PubMed ID: 24555507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein processing characterized by a gel-free proteomics approach.
    Van Damme P; Impens F; Vandekerckhove J; Gevaert K
    Methods Mol Biol; 2008; 484():245-62. PubMed ID: 18592184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.