These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 21048194)

  • 21. Metadegradomics: toward in vivo quantitative degradomics of proteolytic post-translational modifications of the cancer proteome.
    Doucet A; Butler GS; Rodríguez D; Prudova A; Overall CM
    Mol Cell Proteomics; 2008 Oct; 7(10):1925-51. PubMed ID: 18596063
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N-Terminomics Strategies for Protease Substrates Profiling.
    Mintoo M; Chakravarty A; Tilvawala R
    Molecules; 2021 Aug; 26(15):. PubMed ID: 34361849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cell-based identification of natural substrates and cleavage sites for extracellular proteases by SILAC proteomics.
    Gioia M; Foster LJ; Overall CM
    Methods Mol Biol; 2009; 539():131-53. PubMed ID: 19377966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mouse and human granzyme B have distinct tetrapeptide specificities and abilities to recruit the bid pathway.
    Casciola-Rosen L; Garcia-Calvo M; Bull HG; Becker JW; Hines T; Thornberry NA; Rosen A
    J Biol Chem; 2007 Feb; 282(7):4545-4552. PubMed ID: 17179148
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative proteomics in plant protease substrate identification.
    Demir F; Niedermaier S; Villamor JG; Huesgen PF
    New Phytol; 2018 May; 218(3):936-943. PubMed ID: 28493421
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Peptidomic approaches to study proteolytic activity.
    Lyons PJ; Fricker LD
    Curr Protoc Protein Sci; 2011 Aug; Chapter 18():Unit18.13. PubMed ID: 21842468
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proteome-Derived Peptide Libraries for Deep Specificity Profiling of N-terminal Modification Reagents.
    Bridge HN; Weeks AM
    Curr Protoc; 2023 Jun; 3(6):e798. PubMed ID: 37283519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contemporary positional proteomics strategies to study protein processing.
    Plasman K; Van Damme P; Gevaert K
    Curr Opin Chem Biol; 2013 Feb; 17(1):66-72. PubMed ID: 23291282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. N-Terminomics/TAILS of Human Tumor Biopsies and Cancer Cell Lines.
    Derakhshani A; Bulluss M; Penner R; Dufour A
    Methods Mol Biol; 2024; 2747():19-28. PubMed ID: 38038928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomic techniques and activity-based probes for the system-wide study of proteolysis.
    auf dem Keller U; Schilling O
    Biochimie; 2010 Nov; 92(11):1705-14. PubMed ID: 20493233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A proteomic approach for the discovery of protease substrates.
    Bredemeyer AJ; Lewis RM; Malone JP; Davis AE; Gross J; Townsend RR; Ley TJ
    Proc Natl Acad Sci U S A; 2004 Aug; 101(32):11785-90. PubMed ID: 15280543
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proteome-wide Identification of HtrA2/Omi Substrates.
    Vande Walle L; Van Damme P; Lamkanfi M; Saelens X; Vandekerckhove J; Gevaert K; Vandenabeele P
    J Proteome Res; 2007 Mar; 6(3):1006-15. PubMed ID: 17266347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Complementary positional proteomics for screening substrates of endo- and exoproteases.
    Van Damme P; Staes A; Bronsoms S; Helsens K; Colaert N; Timmerman E; Aviles FX; Vandekerckhove J; Gevaert K
    Nat Methods; 2010 Jul; 7(7):512-5. PubMed ID: 20526345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Protease Cleavage Sites and Substrates in Cancer by Carboxy-TAILS (C-TAILS).
    Solis N; Overall CM
    Methods Mol Biol; 2018; 1731():15-28. PubMed ID: 29318539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Next-Generation Trapping of Protease Substrates by Label-Free Proteomics.
    Lindemann C; Thomanek N; Kuhlmann K; Meyer HE; Marcus K; Narberhaus F
    Methods Mol Biol; 2018; 1841():189-206. PubMed ID: 30259488
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current trends and challenges in proteomic identification of protease substrates.
    Vizovišek M; Vidmar R; Fonović M; Turk B
    Biochimie; 2016 Mar; 122():77-87. PubMed ID: 26514758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Protease Specificity by Combining Proteome-Derived Peptide Libraries and Quantitative Proteomics.
    Biniossek ML; Niemer M; Maksimchuk K; Mayer B; Fuchs J; Huesgen PF; McCafferty DG; Turk B; Fritz G; Mayer J; Haecker G; Mach L; Schilling O
    Mol Cell Proteomics; 2016 Jul; 15(7):2515-24. PubMed ID: 27122596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural and kinetic determinants of protease substrates.
    Timmer JC; Zhu W; Pop C; Regan T; Snipas SJ; Eroshkin AM; Riedl SJ; Salvesen GS
    Nat Struct Mol Biol; 2009 Oct; 16(10):1101-8. PubMed ID: 19767749
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Six alternative proteases for mass spectrometry-based proteomics beyond trypsin.
    Giansanti P; Tsiatsiani L; Low TY; Heck AJ
    Nat Protoc; 2016 May; 11(5):993-1006. PubMed ID: 27123950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.