These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21048287)

  • 41. Comparison of laser speckle and laser Doppler perfusion imaging: measurement in human skin and rabbit articular tissue.
    Forrester KR; Stewart C; Tulip J; Leonard C; Bray RC
    Med Biol Eng Comput; 2002 Nov; 40(6):687-97. PubMed ID: 12507319
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scattering through fruits during ripening: laser speckle technique correlated to biochemical and fluorescence measurements.
    Nassif R; Pellen F; Magné C; Le Jeune B; Le Brun G; Abboud M
    Opt Express; 2012 Oct; 20(21):23887-97. PubMed ID: 23188354
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and evaluation of a miniature laser speckle imaging device to assess gingival health.
    Regan C; White SM; Yang BY; Takesh T; Ho J; Wink C; Wilder-Smith P; Choi B
    J Biomed Opt; 2016 Oct; 21(10):104002. PubMed ID: 27787545
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Determination of the effect of source intensity profile on speckle contrast using coherent spatial frequency domain imaging.
    Rice TB; Konecky SD; Owen C; Choi B; Tromberg BJ
    Biomed Opt Express; 2012 Jun; 3(6):1340-9. PubMed ID: 22741080
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-time blood flow visualization using the graphics processing unit.
    Yang O; Cuccia D; Choi B
    J Biomed Opt; 2011; 16(1):016009. PubMed ID: 21280915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthetic exposure with a CMOS camera for multiple exposure speckle imaging of blood flow.
    Chammas M; Pain F
    Sci Rep; 2022 Mar; 12(1):4708. PubMed ID: 35304556
    [TBL] [Abstract][Full Text] [Related]  

  • 47. High resolution cerebral blood flow imaging by registered laser speckle contrast analysis.
    Miao P; Rege A; Li N; Thakor NV; Tong S
    IEEE Trans Biomed Eng; 2010 May; 57(5):1152-7. PubMed ID: 20142159
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.
    Rice TB; Kwan E; Hayakawa CK; Durkin AJ; Choi B; Tromberg BJ
    Biomed Opt Express; 2013; 4(12):2880-92. PubMed ID: 24409388
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correcting the detrimental effects of nonuniform intensity distribution on fiber-transmitting laser speckle imaging of blood flow.
    Zhang H; Li P; Feng N; Qiu J; Li B; Luo W; Luo Q
    Opt Express; 2012 Jan; 20(1):508-17. PubMed ID: 22274372
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy.
    Chen M; Wen D; Huang S; Gui S; Zhang Z; Lu J; Li P
    Opt Lett; 2018 Nov; 43(22):5627-5630. PubMed ID: 30439911
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Laser speckle contrast imaging: theoretical and practical limitations.
    Briers D; Duncan DD; Hirst E; Kirkpatrick SJ; Larsson M; Steenbergen W; Stromberg T; Thompson OB
    J Biomed Opt; 2013 Jun; 18(6):066018. PubMed ID: 23807512
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Magnetomotive laser speckle imaging.
    Kim J; Oh J; Choi B
    J Biomed Opt; 2010; 15(1):011110. PubMed ID: 20210436
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Repetitive cerebral blood flow measurements using laser speckle imaging in a transient cerebral ischemic mouse model.
    Murozono M; Suzuki M; Kubota A; Ando C; Miyata K; Arai T; Nishiyama T; Hatakeyama K
    Acta Neurochir Suppl; 2013; 118():71-5. PubMed ID: 23564107
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Robust quantitative single-exposure laser speckle imaging with true flow speckle contrast in the temporal and spatial domains.
    Wang C; Cao Z; Jin X; Lin W; Zheng Y; Zeng B; Xu M
    Biomed Opt Express; 2019 Aug; 10(8):4097-4114. PubMed ID: 31452997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tissue deformation analysis using a laser based digital image correlation technique.
    Kerl J; Parittotokkaporn T; Frasson L; Oldfield M; y Baena FR; Beyrau F
    J Mech Behav Biomed Mater; 2012 Feb; 6():159-65. PubMed ID: 22301185
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Laser speckle flowgraphy can also be used to show dynamic changes in the blood flow of the skin of the foot after surgical revascularization.
    Kikuchi S; Miyake K; Tada Y; Uchida D; Koya A; Saito Y; Ohura T; Azuma N
    Vascular; 2019 Jun; 27(3):242-251. PubMed ID: 30419804
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrasonic enhancement of photoacoustic emissions by nanoparticle-targeted cavitation.
    McLaughlan JR; Roy RA; Ju H; Murray TW
    Opt Lett; 2010 Jul; 35(13):2127-9. PubMed ID: 20596168
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantitative long-term measurements of burns in a rat model using Spatial Frequency Domain Imaging (SFDI) and Laser Speckle Imaging (LSI).
    Ponticorvo A; Burmeister DM; Rowland R; Baldado M; Kennedy GT; Saager R; Bernal N; Choi B; Durkin AJ
    Lasers Surg Med; 2017 Mar; 49(3):293-304. PubMed ID: 28220508
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Laser speckle spatiotemporal variance analysis for noninvasive widefield measurements of blood pulsation and pulse rate on a camera-phone.
    Remer I; Bilenca A
    J Biophotonics; 2015 Nov; 8(11-12):902-7. PubMed ID: 25908015
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High resolution mapping of cortical blood flow by mosaicing the laser speckle images.
    Yu J; Miao P; Li M; Qiu Y; Zhu Y; Tong S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3743-6. PubMed ID: 19163525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.