These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 2104837)
41. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis. Engelhard M; Scharf B; Siebert F FEBS Lett; 1996 Oct; 395(2-3):195-8. PubMed ID: 8898094 [TBL] [Abstract][Full Text] [Related]
42. Probing the proton channel and the retinal binding site of Natronobacterium pharaonis sensory rhodopsin II. Klare JP; Schmies G; Chizhov I; Shimono K; Kamo N; Engelhard M Biophys J; 2002 Apr; 82(4):2156-64. PubMed ID: 11916871 [TBL] [Abstract][Full Text] [Related]
43. Involvement of two groups in reversal of the bathochromic shift of pharaonis phoborhodopsin by chloride at low pH. Shimono K; Kitami M; Iwamoto M; Kamo N Biophys Chem; 2000 Oct; 87(2-3):225-30. PubMed ID: 11099184 [TBL] [Abstract][Full Text] [Related]
44. Importance of the broad regional interaction for spectral tuning in Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II). Shimono K; Hayashi T; Ikeura Y; Sudo Y; Iwamoto M; Kamo N J Biol Chem; 2003 Jun; 278(26):23882-9. PubMed ID: 12690098 [TBL] [Abstract][Full Text] [Related]
45. Color Tuning in rhodopsins: the origin of the spectral shift between the chloride-bound and anion-free forms of halorhodopsin. Ryazantsev MN; Altun A; Morokuma K J Am Chem Soc; 2012 Mar; 134(12):5520-3. PubMed ID: 22397521 [TBL] [Abstract][Full Text] [Related]
46. The novel ion pump rhodopsins from Haloarcula form a family independent from both the bacteriorhodopsin and archaerhodopsin families/tribes. Tateno M; Ihara K; Mukohata Y Arch Biochem Biophys; 1994 Nov; 315(1):127-32. PubMed ID: 7979388 [TBL] [Abstract][Full Text] [Related]
48. Two pumps, one principle: light-driven ion transport in halobacteria. Oesterhelt D; Tittor J Trends Biochem Sci; 1989 Feb; 14(2):57-61. PubMed ID: 2468194 [TBL] [Abstract][Full Text] [Related]
49. Time-resolved detection of transient movement of helix F in spin-labelled pharaonis sensory rhodopsin II. Wegener AA; Chizhov I; Engelhard M; Steinhoff HJ J Mol Biol; 2000 Aug; 301(4):881-91. PubMed ID: 10966793 [TBL] [Abstract][Full Text] [Related]
50. Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis. Mizuno M; Nakajima A; Kandori H; Mizutani Y J Phys Chem A; 2018 Mar; 122(9):2411-2423. PubMed ID: 29460629 [TBL] [Abstract][Full Text] [Related]
51. [Studies on bacteriorhodopsin and halorhodopsin of halobacteria by recombinant-DNA techniques]. Tokunaga F Tanpakushitsu Kakusan Koso; 1989 May; 34(5):505-17. PubMed ID: 2748895 [No Abstract] [Full Text] [Related]
52. V108M mutant of pharaonis phoborhodopsin: substitution caused no absorption change but affected its M-state. Shimono K; Iwamoto M; Sumi M; Kamo N J Biochem; 1998 Aug; 124(2):404-9. PubMed ID: 9685733 [TBL] [Abstract][Full Text] [Related]
53. Proton release and uptake of pharaonis phoborhodopsin (sensory rhodopsin II) reconstituted into phospholipids. Iwamoto M; Hasegawa C; Sudo Y; Shimono K; Araiso T; Kamo N Biochemistry; 2004 Mar; 43(11):3195-203. PubMed ID: 15023069 [TBL] [Abstract][Full Text] [Related]
54. Light-induced structural changes occur in the transmembrane helices of the Natronobacterium pharaonis HtrII transducer. Yang CS; Spudich JL Biochemistry; 2001 Nov; 40(47):14207-14. PubMed ID: 11714274 [TBL] [Abstract][Full Text] [Related]
55. Synthesis of a gene for sensory rhodopsin I and its functional expression in Halobacterium halobium. Krebs MP; Spudich EN; Khorana HG; Spudich JL Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3486-90. PubMed ID: 8475097 [TBL] [Abstract][Full Text] [Related]
56. Structure of the retinal chromophore in the hR578 form of halorhodopsin. Smith SO; Marvin MJ; Bogomolni RA; Mathies RA J Biol Chem; 1984 Oct; 259(20):12326-9. PubMed ID: 6490613 [TBL] [Abstract][Full Text] [Related]
57. Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Sudo Y; Iwamoto M; Shimono K; Sumi M; Kamo N Biophys J; 2001 Feb; 80(2):916-22. PubMed ID: 11159458 [TBL] [Abstract][Full Text] [Related]
58. Characterization of a halobacterial gene affecting bacterio-opsin gene expression. Betlach M; Friedman J; Boyer HW; Pfeifer F Nucleic Acids Res; 1984 Oct; 12(20):7949-59. PubMed ID: 6093059 [TBL] [Abstract][Full Text] [Related]
59. FTIR spectroscopy of the M photointermediate in pharaonis rhoborhodopsin. Furutani Y; Iwamoto M; Shimono K; Kamo N; Kandori H Biophys J; 2002 Dec; 83(6):3482-9. PubMed ID: 12496114 [TBL] [Abstract][Full Text] [Related]
60. Diversity of alkaliphilic halobacteria: proposals for transfer of Natronobacterium vacuolatum, Natronobacterium magadii, and Natronobacterium pharaonis to Halorubrum, Natrialba, and Natronomonas gen. nov., respectively, as Halorubrum vacuolatum comb. nov., Natrialba magadii comb. nov., and Natronomonas pharaonis comb. nov., respectively. Kamekura M; Dyall-Smith ML; Upasani V; Ventosa A; Kates M Int J Syst Bacteriol; 1997 Jul; 47(3):853-7. PubMed ID: 9226918 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]