These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 21049309)
1. Investigation into the degree of variability in the solid-state properties of common pharmaceutical excipients-anhydrous lactose. Gamble JF; Chiu WS; Gray V; Toale H; Tobyn M; Wu Y AAPS PharmSciTech; 2010 Dec; 11(4):1552-7. PubMed ID: 21049309 [TBL] [Abstract][Full Text] [Related]
2. Effect of milling and compression on the solid-state Maillard reaction. Qiu Z; Stowell JG; Cao W; Morris KR; Byrn SR; Carvajal MT J Pharm Sci; 2005 Nov; 94(11):2568-80. PubMed ID: 16200560 [TBL] [Abstract][Full Text] [Related]
3. Effects of excipients and curing process on the abuse deterrent properties of directly compressed tablets. Rahman Z; Zidan AS; Korang-Yeboah M; Yang Y; Siddiqui A; Shakleya D; Khan MA; Cruz C; Ashraf M Int J Pharm; 2017 Jan; 517(1-2):303-311. PubMed ID: 27956191 [TBL] [Abstract][Full Text] [Related]
4. Characterisation and functionality of inhalation anhydrous lactose. Pitchayajittipong C; Price R; Shur J; Kaerger JS; Edge S Int J Pharm; 2010 May; 390(2):134-41. PubMed ID: 20100552 [TBL] [Abstract][Full Text] [Related]
5. Simulation of roller compaction with subsequent tableting and characterization of lactose and microcrystalline cellulose. Hein S; Picker-Freyer KM; Langridge J Pharm Dev Technol; 2008; 13(6):523-32. PubMed ID: 18728996 [TBL] [Abstract][Full Text] [Related]
6. The surface characterisation and comparison of two potential sub-micron, sugar bulking excipients for use in low-dose, suspension formulations in metered dose inhalers. James J; Crean B; Davies M; Toon R; Jinks P; Roberts CJ Int J Pharm; 2008 Sep; 361(1-2):209-21. PubMed ID: 18577435 [TBL] [Abstract][Full Text] [Related]
7. The impact of roller compaction and tablet compression on physicomechanical properties of pharmaceutical excipients. Iyer RM; Hegde S; Dinunzio J; Singhal D; Malick W Pharm Dev Technol; 2014 Aug; 19(5):583-92. PubMed ID: 23941645 [TBL] [Abstract][Full Text] [Related]
8. Comparative evaluation of two direct compression lactose grades for pyridoxine hydrochloride tablets. Aly SA; Udeala OK Pharmazie; 1988 Mar; 43(3):188-90. PubMed ID: 3380861 [TBL] [Abstract][Full Text] [Related]
9. A comparison of drug loading capacity of cellactose with two ad hoc processed lactose-cellulose direct compression excipients. Casalderrey M; Souto C; Concheiro A; Gómez-Amoza JL; Martínez-Pacheco R Chem Pharm Bull (Tokyo); 2004 Apr; 52(4):398-401. PubMed ID: 15056951 [TBL] [Abstract][Full Text] [Related]
10. The determination of the mechanical strength of tablets of different shapes. Davies PN; Worthington HE; Podczeck F; Newton JM Eur J Pharm Biopharm; 2007 Aug; 67(1):268-76. PubMed ID: 17329086 [TBL] [Abstract][Full Text] [Related]
11. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes. Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069 [TBL] [Abstract][Full Text] [Related]
12. Anti-counterfeiting DNA molecular tagging of pharmaceutical excipients: An evaluation of lactose containing tablets. Altamimi MJ; Greenwood JC; Wolff K; Hogan ME; Lakhani A; Martin GP; Royall PG Int J Pharm; 2019 Nov; 571():118656. PubMed ID: 31499233 [TBL] [Abstract][Full Text] [Related]
13. Study of the compaction mechanisms of lactose-based direct compression excipients using indentation hardness and Heckel plots. Monedero Perales MD; Muñoz-Ruiz A; Velasco Antequera MV; Jiménez-Castellanos Ballesteros MR J Pharm Pharmacol; 1994 Mar; 46(3):177-81. PubMed ID: 8027923 [TBL] [Abstract][Full Text] [Related]
14. Influence of amorphous content on compaction behaviour of anhydrous alpha-lactose. Ziffels S; Steckel H Int J Pharm; 2010 Mar; 387(1-2):71-8. PubMed ID: 20005927 [TBL] [Abstract][Full Text] [Related]
15. A comparative study of the influence of alpha-lactose monohydrate particle morphology on granule and tablet properties after roll compaction/dry granulation. Grote S; Kleinebudde P Pharm Dev Technol; 2019 Mar; 24(3):314-322. PubMed ID: 29757067 [TBL] [Abstract][Full Text] [Related]
16. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose. Tay JYS; Kok BWT; Liew CV; Heng PWS J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886 [TBL] [Abstract][Full Text] [Related]
17. Real-time assessment of critical quality attributes of a continuous granulation process. Fonteyne M; Vercruysse J; Díaz DC; Gildemyn D; Vervaet C; Remon JP; De Beer T Pharm Dev Technol; 2013 Feb; 18(1):85-97. PubMed ID: 22023327 [TBL] [Abstract][Full Text] [Related]
18. Investigating the effects of excipients on the powder flow characteristics of theophylline anhydrous powder formulations. Nagel KM; Peck GE Drug Dev Ind Pharm; 2003 Mar; 29(3):277-87. PubMed ID: 12741609 [TBL] [Abstract][Full Text] [Related]
19. Relationships between the effective interparticulate contact area and the tensile strength of tablets of amorphous and crystalline lactose of varying particle size. Sebhatu T; Alderborn G Eur J Pharm Sci; 1999 Aug; 8(4):235-42. PubMed ID: 10425373 [TBL] [Abstract][Full Text] [Related]
20. Influence of shear intensity and total shear on properties of blends and tablets of lactose and cellulose lubricated with magnesium stearate. Mehrotra A; Llusa M; Faqih A; Levin M; Muzzio FJ Int J Pharm; 2007 May; 336(2):284-91. PubMed ID: 17236729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]