BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 21049385)

  • 1. The plasma microparticle proteome.
    Little KM; Smalley DM; Harthun NL; Ley K
    Semin Thromb Hemost; 2010 Nov; 36(8):845-56. PubMed ID: 21049385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteome profiling of normal human circulating microparticles.
    Østergaard O; Nielsen CT; Iversen LV; Jacobsen S; Tanassi JT; Heegaard NH
    J Proteome Res; 2012 Apr; 11(4):2154-63. PubMed ID: 22329422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the human pituitary proteome by data independent label-free liquid chromatography tandem mass spectrometry.
    Krishnamurthy D; Levin Y; Harris LW; Umrania Y; Bahn S; Guest PC
    Proteomics; 2011 Feb; 11(3):495-500. PubMed ID: 21268279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The platelet microparticle proteome.
    Garcia BA; Smalley DM; Cho H; Shabanowitz J; Ley K; Hunt DF
    J Proteome Res; 2005; 4(5):1516-21. PubMed ID: 16212402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First insight into the human liver proteome from PROTEOME(SKY)-LIVER(Hu) 1.0, a publicly available database.
    Chinese Human Liver Proteome Profiling Consortium
    J Proteome Res; 2010 Jan; 9(1):79-94. PubMed ID: 19653699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput analysis of rat liver plasma membrane proteome by a nonelectrophoretic in-gel tryptic digestion coupled with mass spectrometry identification.
    Cao R; He Q; Zhou J; He Q; Liu Z; Wang X; Chen P; Xie J; Liang S
    J Proteome Res; 2008 Feb; 7(2):535-45. PubMed ID: 18166008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome.
    Nagaraj N; Mann M
    J Proteome Res; 2011 Feb; 10(2):637-45. PubMed ID: 21126025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probability-based evaluation of peptide and protein identifications from tandem mass spectrometry and SEQUEST analysis: the human proteome.
    Qian WJ; Liu T; Monroe ME; Strittmatter EF; Jacobs JM; Kangas LJ; Petritis K; Camp DG; Smith RD
    J Proteome Res; 2005; 4(1):53-62. PubMed ID: 15707357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct proteome features of plasma microparticles.
    Jin M; Drwal G; Bourgeois T; Saltz J; Wu HM
    Proteomics; 2005 May; 5(7):1940-52. PubMed ID: 15825151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein Biomarker Discovery Using Human Blood Plasma Microparticles.
    Taleb RSZ; Moez P; Younan D; Eisenacher M; Tenbusch M; Sitek B; Bracht T
    Methods Mol Biol; 2019; 1959():51-64. PubMed ID: 30852815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microparticle size and its relation to composition, functional activity, and clinical significance.
    Jy W; Horstman LL; Ahn YS
    Semin Thromb Hemost; 2010 Nov; 36(8):876-80. PubMed ID: 21049388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of microparticles in the hemostatic dysfunction in acute promyelocytic leukemia.
    Kwaan HC; Rego EM
    Semin Thromb Hemost; 2010 Nov; 36(8):917-24. PubMed ID: 21049391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic analysis of malignant lymphocyte membrane microparticles using double ionization coverage optimization.
    Miguet L; Pacaud K; Felden C; Hugel B; Martinez MC; Freyssinet JM; Herbrecht R; Potier N; van Dorsselaer A; Mauvieux L
    Proteomics; 2006 Jan; 6(1):153-71. PubMed ID: 16342139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microparticles in cardiovascular disease pathophysiology and outcomes.
    Viera AJ; Mooberry M; Key NS
    J Am Soc Hypertens; 2012; 6(4):243-52. PubMed ID: 22789878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the precursor ion exclusion feature of liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry for improving protein identification in shotgun proteome analysis.
    Wang N; Li L
    Anal Chem; 2008 Jun; 80(12):4696-710. PubMed ID: 18479145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry.
    Miyamoto M; Yoshida Y; Taguchi I; Nagasaka Y; Tasaki M; Zhang Y; Xu B; Nameta M; Sezaki H; Cuellar LM; Osawa T; Morishita H; Sekiyama S; Yaoita E; Kimura K; Yamamoto T
    J Proteome Res; 2007 Sep; 6(9):3680-90. PubMed ID: 17711322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The minor salivary gland proteome in Sjögren's syndrome.
    Hjelmervik TO; Jonsson R; Bolstad AI
    Oral Dis; 2009 Jul; 15(5):342-53. PubMed ID: 19364392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved membrane proteomics coverage of human embryonic stem cells by peptide IPG-IEF.
    McQuade LR; Schmidt U; Pascovici D; Stojanov T; Baker MS
    J Proteome Res; 2009 Dec; 8(12):5642-9. PubMed ID: 19899800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proteomic advantage: label-free quantification of proteins expressed in bovine milk during experimentally induced coliform mastitis.
    Boehmer JL; DeGrasse JA; McFarland MA; Tall EA; Shefcheck KJ; Ward JL; Bannerman DD
    Vet Immunol Immunopathol; 2010 Dec; 138(4):252-66. PubMed ID: 21067814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine.
    Li QR; Fan KX; Li RX; Dai J; Wu CC; Zhao SL; Wu JR; Shieh CH; Zeng R
    Rapid Commun Mass Spectrom; 2010 Mar; 24(6):823-32. PubMed ID: 20187088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.