These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 21049565)

  • 1. Internal plastid-targeting signal found in a RubisCO small subunit protein of a chlorarachniophyte alga.
    Hirakawa Y; Ishida K
    Plant J; 2010 Nov; 64(3):402-10. PubMed ID: 21049565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein targeting into secondary plastids of chlorarachniophytes.
    Hirakawa Y; Nagamune K; Ishida K
    Proc Natl Acad Sci U S A; 2009 Aug; 106(31):12820-5. PubMed ID: 19620731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterologous signals allow efficient targeting of a nuclear-encoded fusion protein to plastids and endoplasmic reticulum in diverse plant species.
    Gnanasambandam A; Polkinghorne IG; Birch RG
    Plant Biotechnol J; 2007 Mar; 5(2):290-6. PubMed ID: 17309684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The physical and functional borders of transit peptide-like sequences in secondary endosymbionts.
    Felsner G; Sommer MS; Maier UG
    BMC Plant Biol; 2010 Oct; 10():223. PubMed ID: 20958984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of periplastidal compartment-targeting signals in chlorarachniophytes.
    Hirakawa Y; Gile GH; Ota S; Keeling PJ; Ishida K
    Mol Biol Evol; 2010 Jul; 27(7):1538-45. PubMed ID: 20133351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for Golgi-independent transport from the early secretory pathway to the plastid in malaria parasites.
    Tonkin CJ; Struck NS; Mullin KA; Stimmler LM; McFadden GI
    Mol Microbiol; 2006 Aug; 61(3):614-30. PubMed ID: 16787449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-based reconstruction of the protein import machinery in the secondary plastid of a chlorarachniophyte alga.
    Hirakawa Y; Burki F; Keeling PJ
    Eukaryot Cell; 2012 Mar; 11(3):324-33. PubMed ID: 22267775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo characterization of diatom multipartite plastid targeting signals.
    Apt KE; Zaslavkaia L; Lippmeier JC; Lang M; Kilian O; Wetherbee R; Grossman AR; Kroth PG
    J Cell Sci; 2002 Nov; 115(Pt 21):4061-9. PubMed ID: 12356911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids.
    Kilian O; Kroth PG
    Plant J; 2005 Jan; 41(2):175-83. PubMed ID: 15634195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual targeting of aminoacyl-tRNA synthetases to the mitochondrion and complex plastid in chlorarachniophytes.
    Hirakawa Y; Burki F; Keeling PJ
    J Cell Sci; 2012 Dec; 125(Pt 24):6176-84. PubMed ID: 23038770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrenoid proteomics reveals independent evolution of the CO
    Moromizato R; Fukuda K; Suzuki S; Motomura T; Nagasato C; Hirakawa Y
    Proc Natl Acad Sci U S A; 2024 Mar; 121(10):e2318542121. PubMed ID: 38408230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans.
    Rogers MB; Archibald JM; Field MA; Li C; Striepen B; Keeling PJ
    J Eukaryot Microbiol; 2004; 51(5):529-35. PubMed ID: 15537087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualisation of plastids in endosperm, pollen and roots of transgenic wheat expressing modified GFP fused to transit peptides from wheat SSU RubisCO, rice FtsZ and maize ferredoxin III proteins.
    Primavesi LF; Wu H; Mudd EA; Day A; Jones HD
    Transgenic Res; 2008 Aug; 17(4):529-43. PubMed ID: 17710559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective function of FtsZ proteins in the secondary plastid of chlorarachniophyte algae.
    Hirakawa Y; Ishida K
    BMC Plant Biol; 2015 Nov; 15():276. PubMed ID: 26556725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex protein targeting to dinoflagellate plastids.
    Patron NJ; Waller RF; Archibald JM; Keeling PJ
    J Mol Biol; 2005 May; 348(4):1015-24. PubMed ID: 15843030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plastid genome sequences of Gymnochlora stellata, Lotharella vacuolata, and Partenskyella glossopodia reveal remarkable structural conservation among chlorarachniophyte species.
    Suzuki S; Hirakawa Y; Kofuji R; Sugita M; Ishida KI
    J Plant Res; 2016 Jul; 129(4):581-590. PubMed ID: 26920842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Silico Tools for the Prediction of Protein Import into Secondary Plastids.
    Moog D
    Methods Mol Biol; 2018; 1829():381-394. PubMed ID: 29987735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The gene for the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit relocated to the plastid genome of tobacco directs the synthesis of small subunits that assemble into Rubisco.
    Whitney SM; Andrews TJ
    Plant Cell; 2001 Jan; 13(1):193-205. PubMed ID: 11158539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presequence acquisition during secondary endocytobiosis and the possible role of introns.
    Kilian O; Kroth PG
    J Mol Evol; 2004 Jun; 58(6):712-21. PubMed ID: 15461428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution rate calibration of small subunit ribosomal RNA identifies chlorarachniophyte endosymbionts as remnants of green algae.
    Van de Peer Y; Rensing SA; Maier UG; De Wachter R
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7732-6. PubMed ID: 8755544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.