These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 21049979)

  • 21. Toxicity of 58 substituted anilines and phenols to algae Pseudokirchneriella subcapitata and bacteria Vibrio fischeri: comparison with published data and QSARs.
    Aruoja V; Sihtmäe M; Dubourguier HC; Kahru A
    Chemosphere; 2011 Sep; 84(10):1310-20. PubMed ID: 21664645
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model Suite for Predicting the Aquatic Toxicity of α,β-Unsaturated Esters Triggered by Their Chemoavailability.
    Mulliner D; Schüürmann G
    Mol Inform; 2013 Jan; 32(1):98-107. PubMed ID: 27481027
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A QSAR study of the acute toxicity of some industrial organic chemicals to goldfish. Narcosis, electrophile and proelectrophile mechanisms.
    Lipnick RL; Watson KR; Strausz AK
    Xenobiotica; 1987 Aug; 17(8):1011-25. PubMed ID: 3673107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri.
    Cronin MT; Schultz TW
    Ecotoxicol Environ Saf; 1998 Jan; 39(1):65-9. PubMed ID: 9515077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative structure-activity relationships for estimating the no-observable-effects concentration in fathead minnows (Pimephales promelas).
    Jones SL; Schultz TW
    Qual Assur; 1995 Sep; 4(3):187-203. PubMed ID: 8705114
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemoavailability of Organic Electrophiles: Impact of Hydrophobicity and Reactivity on Their Aquatic Excess Toxicity.
    Böhme A; Laqua A; Schüürmann G
    Chem Res Toxicol; 2016 Jun; 29(6):952-62. PubMed ID: 27096880
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of Tetrahymena and Pimephales toxicity based on mechanism of action.
    Bearden AP; Schultz TW
    SAR QSAR Environ Res; 1998; 9(3-4):127-53. PubMed ID: 9933957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Read-Across Prediction of the Acute Toxicity of Organic Compounds toward the Water Flea Daphnia magna.
    Kühne R; Ebert RU; von der Ohe PC; Ulrich N; Brack W; Schüürmann G
    Mol Inform; 2013 Jan; 32(1):108-20. PubMed ID: 27481028
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.
    Zhang J; Wang C; Ji L; Liu W
    Chem Res Toxicol; 2016 May; 29(5):841-50. PubMed ID: 26929981
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrimination of excess toxicity from narcotic effect: comparison of toxicity of class-based organic chemicals to Daphnia magna and Tetrahymena pyriformis.
    Zhang X; Qin W; He J; Wen Y; Su L; Sheng L; Zhao Y
    Chemosphere; 2013 Sep; 93(2):397-407. PubMed ID: 23786811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The luminescent bacteria test to determine the acute toxicity of nanoparticle suspensions.
    Garcia A; Recillas S; Sánchez A; Font X
    Methods Mol Biol; 2012; 926():255-9. PubMed ID: 22975970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental and predicted acute toxicity of antibacterial compounds and their mixtures using the luminescent bacterium Vibrio fischeri.
    Villa S; Vighi M; Finizio A
    Chemosphere; 2014 Aug; 108():239-44. PubMed ID: 24529397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays.
    Terasaki M; Makino M; Tatarazako N
    J Appl Toxicol; 2009 Apr; 29(3):242-7. PubMed ID: 19089854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mixture effects of organic micropollutants present in water: towards the development of effect-based water quality trigger values for baseline toxicity.
    Tang JY; McCarty S; Glenn E; Neale PA; Warne MS; Escher BI
    Water Res; 2013 Jun; 47(10):3300-14. PubMed ID: 23618317
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vibrio fischeri bioluminescence inhibition assay for ecotoxicity assessment: A review.
    Abbas M; Adil M; Ehtisham-Ul-Haque S; Munir B; Yameen M; Ghaffar A; Shar GA; Asif Tahir M; Iqbal M
    Sci Total Environ; 2018 Jun; 626():1295-1309. PubMed ID: 29898537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel continuous toxicity test system using a luminously modified freshwater bacterium.
    Cho JC; Park KJ; Ihm HS; Park JE; Kim SY; Kang I; Lee KH; Jahng D; Lee DH; Kim SJ
    Biosens Bioelectron; 2004 Sep; 20(2):338-44. PubMed ID: 15308239
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence.
    Gellert G
    Ecotoxicol Environ Saf; 2000 Jan; 45(1):87-91. PubMed ID: 10677271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High throughput kinetic Vibrio fischeri bioluminescence inhibition assay for study of toxic effects of nanoparticles.
    Mortimer M; Kasemets K; Heinlaan M; Kurvet I; Kahru A
    Toxicol In Vitro; 2008 Aug; 22(5):1412-7. PubMed ID: 18400463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. LuxCDABE--transformed constitutively bioluminescent Escherichia coli for toxicity screening: comparison with naturally luminous Vibrio fischeri.
    Kurvet I; Ivask A; Bondarenko O; Sihtmäe M; Kahru A
    Sensors (Basel); 2011; 11(8):7865-78. PubMed ID: 22164050
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adverse effects of organic arsenical compounds towards Vibrio fischeri bacteria.
    Fulladosa E; Murat JC; Bollinger JC; Villaescusa I
    Sci Total Environ; 2007 May; 377(2-3):207-13. PubMed ID: 17445869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.