These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21050005)

  • 1. Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection.
    Lin YA; Chalker JM; Davis BG
    J Am Chem Soc; 2010 Dec; 132(47):16805-11. PubMed ID: 21050005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enabling olefin metathesis on proteins: chemical methods for installation of S-allyl cysteine.
    Chalker JM; Lin YA; Boutureira O; Davis BG
    Chem Commun (Camb); 2009 Jul; (25):3714-6. PubMed ID: 19557258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The allylic chalcogen effect in olefin metathesis.
    Lin YA; Davis BG
    Beilstein J Org Chem; 2010 Dec; 6():1219-28. PubMed ID: 21283554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection.
    Mangold SL; O'Leary DJ; Grubbs RH
    J Am Chem Soc; 2014 Sep; 136(35):12469-78. PubMed ID: 25102124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic Incorporation of Olefin Cross-Metathesis Reaction Tags for Protein Modification.
    Bhushan B; Lin YA; Bak M; Phanumartwiwath A; Yang N; Bilyard MK; Tanaka T; Hudson KL; Lercher L; Stegmann M; Mohammed S; Davis BG
    J Am Chem Soc; 2018 Nov; 140(44):14599-14603. PubMed ID: 30371070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Olefin metathesis for site-selective protein modification.
    Lin YA; Chalker JM; Davis BG
    Chembiochem; 2009 Apr; 10(6):959-69. PubMed ID: 19343741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allyl sulfides are privileged substrates in aqueous cross-metathesis: application to site-selective protein modification.
    Lin YA; Chalker JM; Floyd N; Bernardes GJ; Davis BG
    J Am Chem Soc; 2008 Jul; 130(30):9642-3. PubMed ID: 18593118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A general model for selectivity in olefin cross metathesis.
    Chatterjee AK; Choi TL; Sanders DP; Grubbs RH
    J Am Chem Soc; 2003 Sep; 125(37):11360-70. PubMed ID: 16220959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins.
    Lin YA; Boutureira O; Lercher L; Bhushan B; Paton RS; Davis BG
    J Am Chem Soc; 2013 Aug; 135(33):12156-9. PubMed ID: 23889088
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds.
    Xu C; Shen X; Hoveyda AH
    J Am Chem Soc; 2017 Aug; 139(31):10919-10928. PubMed ID: 28749659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olefin metathesis for chemical biology.
    Binder JB; Raines RT
    Curr Opin Chem Biol; 2008 Dec; 12(6):767-73. PubMed ID: 18935975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-pot terminal alkene homologation using a tandem olefin cross-metathesis/allylic carbonate reduction sequence.
    Comins DL; Dinsmore JM; Marks LR
    Chem Commun (Camb); 2007 Oct; (40):4170-1. PubMed ID: 17925965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimolecular Cross-Metathesis of a Tetrasubstituted Alkene with Allylic Sulfones.
    Sapkota RR; Jarvis JM; Schaub TM; Talipov MR; Arterburn JB
    ChemistryOpen; 2019 Feb; 8(2):201-205. PubMed ID: 30815328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.
    Edwards GA; Culp PA; Chalker JM
    Chem Commun (Camb); 2015 Jan; 51(3):515-8. PubMed ID: 25410944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-Catalyzed Olefin Metathesis: Recent Theoretical and Experimental Advances.
    Grau BW; Neuhauser A; Aghazada S; Meyer K; Tsogoeva SB
    Chemistry; 2022 Nov; 28(62):e202201414. PubMed ID: 35770829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-assisted Olefin Metathesis as Pivotal Step in the Synthesis of Bioactive Compounds.
    Etse KS; Ngendera A; Ntumba NT; Demonceau A; Delaude L; Dragutan I; Dragutan V
    Curr Med Chem; 2017; 24(41):4538-4578. PubMed ID: 28292236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic Carbonyl-Olefin Metathesis of Aliphatic Ketones: Iron(III) Homo-Dimers as Lewis Acidic Superelectrophiles.
    Albright H; Riehl PS; McAtee CC; Reid JP; Ludwig JR; Karp LA; Zimmerman PM; Sigman MS; Schindler CS
    J Am Chem Soc; 2019 Jan; 141(4):1690-1700. PubMed ID: 30596414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of Ethylene on Efficiency and Stereocontrol in Olefin Metathesis: When to Add It, When to Remove It, and When to Avoid It.
    Hoveyda AH; Liu Z; Qin C; Koengeter T; Mu Y
    Angew Chem Int Ed Engl; 2020 Dec; 59(50):22324-22348. PubMed ID: 32881222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid-phase olefin cross-metathesis promoted by a linker.
    Garner AL; Koide K
    Org Lett; 2007 Dec; 9(25):5235-8. PubMed ID: 18001044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of olefin metathesis in the synthesis of steroids.
    Morzycki JW
    Steroids; 2011; 76(10-11):949-66. PubMed ID: 21515301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.