These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 21050435)

  • 1. Numerical optimization of gene electrotransfer into muscle tissue.
    Zupanic A; Corovic S; Miklavcic D; Pavlin M
    Biomed Eng Online; 2010 Nov; 9():66. PubMed ID: 21050435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of gene electrotransfer efficiency based on electroporation volume and electrophoretic movement of plasmid DNA.
    Forjanič T; Miklavčič D
    Biomed Eng Online; 2018 Jun; 17(1):80. PubMed ID: 29914508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical and numerical quantification and comparison of the local electric field in the tissue for different electrode configurations.
    Corović S; Pavlin M; Miklavcic D
    Biomed Eng Online; 2007 Oct; 6():37. PubMed ID: 17937793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of electric field distribution in tissues during electroporation.
    Corovic S; Lackovic I; Sustaric P; Sustar T; Rodic T; Miklavcic D
    Biomed Eng Online; 2013 Feb; 12():16. PubMed ID: 23433433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment planning of electroporation-based medical interventions: electrochemotherapy, gene electrotransfer and irreversible electroporation.
    Zupanic A; Kos B; Miklavcic D
    Phys Med Biol; 2012 Sep; 57(17):5425-40. PubMed ID: 22864181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monopolar gene electrotransfer enhances plasmid DNA delivery to skin.
    Bulysheva A; Heller L; Francis M; Varghese F; Boye C; Heller R
    Bioelectrochemistry; 2021 Aug; 140():107814. PubMed ID: 33962133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing electrode orientation, but not pulse polarity, increases the efficacy of gene electrotransfer to tumors in vivo.
    Todorovic V; Kamensek U; Sersa G; Cemazar M
    Bioelectrochemistry; 2014 Dec; 100():119-27. PubMed ID: 24411306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Assisted In Vivo Gene Electrotransfer.
    Donate A; Bulysheva A; Edelblute C; Jung D; Malik MA; Guo S; Burcus N; Schoenbach K; Heller R
    Curr Gene Ther; 2016; 16(2):83-9. PubMed ID: 27029944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The optimization of needle electrode number and placement for irreversible electroporation of hepatocellular carcinoma.
    Adeyanju OO; Al-Angari HM; Sahakian AV
    Radiol Oncol; 2012 Jun; 46(2):126-35. PubMed ID: 23077449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling.
    Corović S; Zupanic A; Kranjc S; Al Sakere B; Leroy-Willig A; Mir LM; Miklavcic D
    Med Biol Eng Comput; 2010 Jul; 48(7):637-48. PubMed ID: 20424926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Educational application for visualization and analysis of electric field strength in multiple electrode electroporation.
    Mahnič-Kalamiza S; Kotnik T; Miklavčič D
    BMC Med Educ; 2012 Oct; 12():102. PubMed ID: 23107609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of impaired DNA mobility on gene electrotransfer efficiency: analysis in 3D model.
    Meglič SH; Pavlin M
    Biomed Eng Online; 2021 Aug; 20(1):85. PubMed ID: 34419072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo gene electrotransfer into skeletal muscle: effects of plasmid DNA on the occurrence and extent of muscle damage.
    Durieux AC; Bonnefoy R; Busso T; Freyssenet D
    J Gene Med; 2004 Jul; 6(7):809-16. PubMed ID: 15241788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of transgene expression in porcine skin as a function of electrode choice.
    Gothelf A; Mahmood F; Dagnaes-Hansen F; Gehl J
    Bioelectrochemistry; 2011 Oct; 82(2):95-102. PubMed ID: 21724474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue damage modeling in gene electrotransfer: the role of pH.
    Olaiz N; Signori E; Maglietti F; Soba A; Suárez C; Turjanski P; Michinski S; Marshall G
    Bioelectrochemistry; 2014 Dec; 100():105-11. PubMed ID: 24925861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments.
    Mir LM
    Methods Mol Biol; 2014; 1121():3-23. PubMed ID: 24510808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pipette tip with integrated electrodes for gene electrotransfer of cells in suspension: a feasibility study in CHO cells.
    Rebersek M; Kanduser M; Miklavcic D
    Radiol Oncol; 2011 Sep; 45(3):204-8. PubMed ID: 22933957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic component of electric pulses determines the efficacy of in vivo DNA electrotransfer.
    Satkauskas S; André F; Bureau MF; Scherman D; Miklavcic D; Mir LM
    Hum Gene Ther; 2005 Oct; 16(10):1194-201. PubMed ID: 16218780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the effect of electrode orientation on irreversible electroporation with experiment and simulation.
    Wardhana G; Raman NM; Abayazid M; Fütterer JJ
    Int J Comput Assist Radiol Surg; 2022 Aug; 17(8):1399-1407. PubMed ID: 35451675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards electroporation based treatment planning considering electric field induced muscle contractions.
    Golberg A; Rubinsky B
    Technol Cancer Res Treat; 2012 Apr; 11(2):189-201. PubMed ID: 22335414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.