These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 2105068)

  • 1. PaCO2 management during cardiopulmonary bypass: intriguing physiologic rationale, convincing clinical data, evolving hypothesis?
    Prough DS; Stump DA; Troost BT
    Anesthesiology; 1990 Jan; 72(1):3-6. PubMed ID: 2105068
    [No Abstract]   [Full Text] [Related]  

  • 2. A randomized study of carbon dioxide management during hypothermic cardiopulmonary bypass.
    Bashein G; Townes BD; Nessly ML; Bledsoe SW; Hornbein TF; Davis KB; Goldstein DE; Coppel DB
    Anesthesiology; 1990 Jan; 72(1):7-15. PubMed ID: 2105070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for involvement of hypocapnia and hypoperfusion in aetiology of neurological deficit after cardiopulmonary bypass.
    Nevin M; Colchester AC; Adams S; Pepper JR
    Lancet; 1987 Dec; 2(8574):1493-5. PubMed ID: 2892051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Too clever by half? Can bilateral or unilateral NIRS monitoring improve neurological outcome from pediatric cardiopulmonary bypass?
    Hill SJ; Withington DE
    Paediatr Anaesth; 2006 Jul; 16(7):709-11. PubMed ID: 16879512
    [No Abstract]   [Full Text] [Related]  

  • 5. Cerebral vascular reactivity to carbon dioxide before and after cardiopulmonary bypass in children with congenital heart disease.
    Kawaguchi M; Ohsumi H; Ohnishi Y; Nakajima T; Kuro M
    J Thorac Cardiovasc Surg; 1993 Nov; 106(5):823-7. PubMed ID: 8231203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of CO2 exchange during cardiopulmonary bypass.
    Alston RP
    Perfusion; 1994 Mar; 9(2):141-2. PubMed ID: 7919600
    [No Abstract]   [Full Text] [Related]  

  • 7. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease.
    Gravlee GP; Roy RC; Stump DA; Hudspeth AS; Rogers AT; Prough DS
    J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuropsychological function in children with cyanotic heart disease undergoing corrective cardiac surgery: effect of two different rewarming strategies.
    Sahu B; Chauhan S; Kiran U; Bisoi A; Ramakrishnan L; Nehra A
    Eur J Cardiothorac Surg; 2009 Mar; 35(3):505-10. PubMed ID: 19188077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attempted control of hyperglycemia during cardiopulmonary bypass fails to improve neurologic or neurobehavioral outcomes in patients without diabetes mellitus undergoing coronary artery bypass grafting.
    Butterworth J; Wagenknecht LE; Legault C; Zaccaro DJ; Kon ND; Hammon JW; Rogers AT; Troost BT; Stump DA; Furberg CD; Coker LH
    J Thorac Cardiovasc Surg; 2005 Nov; 130(5):1319. PubMed ID: 16256784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of PaCO2 on O2 consumption during cardiopulmonary bypass.
    Kopman AF
    Anesth Analg; 1976; 55(6):898-9. PubMed ID: 1033719
    [No Abstract]   [Full Text] [Related]  

  • 11. Comments about article: induced hypothermia and fever control for prevention and treatment of neurological injuries.
    Geeraerts T; Vigué B; Ract C
    Ann Fr Anesth Reanim; 2009 Jan; 28(1):100-1; author reply 101-2. PubMed ID: 19108980
    [No Abstract]   [Full Text] [Related]  

  • 12. Optimizing selective cerebral perfusion: deleterious effects of high perfusion pressures.
    Halstead JC; Meier M; Wurm M; Zhang N; Spielvogel D; Weisz D; Bodian C; Griepp RB
    J Thorac Cardiovasc Surg; 2008 Apr; 135(4):784-91. PubMed ID: 18374757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygenation and carbon dioxide elimination during cardiopulmonary bypass.
    Baraka A
    Middle East J Anaesthesiol; 1992 Feb; 11(4):303-10. PubMed ID: 1625642
    [No Abstract]   [Full Text] [Related]  

  • 14. Temperature and ventilation after hypothermic cardiopulmonary bypass.
    Sladen RN
    Anesth Analg; 1985 Aug; 64(8):816-20. PubMed ID: 4014746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic metabolism during cardiopulmonary bypass: predictive value of carbon dioxide derived parameters.
    Ranucci M; Isgrò G; Romitti F; Mele S; Biagioli B; Giomarelli P
    Ann Thorac Surg; 2006 Jun; 81(6):2189-95. PubMed ID: 16731152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery from metabolic impairments after hypothermic cardiopulmonary bypass: postoperative changes in arterial-venous carbon dioxide tension difference.
    Utoh J; Moriyama S; Kitamura N; Okamoto K
    Ann Thorac Cardiovasc Surg; 1999 Feb; 5(1):27-30. PubMed ID: 10074565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of low-dose milrinone on gastric intramucosal pH and systemic inflammation after hypothermic cardiopulmonary bypass.
    Yamaura K; Okamoto H; Akiyoshi K; Irita K; Taniyama T; Takahashi S
    J Cardiothorac Vasc Anesth; 2001 Apr; 15(2):197-203. PubMed ID: 11312479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Con: pH-stat management of blood gases is preferable to alpha-stat in patients undergoing brain cooling for cardiac surgery.
    Burrows FA
    J Cardiothorac Vasc Anesth; 1995 Apr; 9(2):219-21. PubMed ID: 7780082
    [No Abstract]   [Full Text] [Related]  

  • 19. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass.
    Castaneda AR; Jonas RA; Mayer JE
    J Thorac Cardiovasc Surg; 1989 Mar; 97(3):471-3. PubMed ID: 2493110
    [No Abstract]   [Full Text] [Related]  

  • 20. Sivelestat attenuates postoperative pulmonary dysfunction after total arch replacement under deep hypothermia.
    Morimoto N; Morimoto K; Morimoto Y; Takahashi H; Asano M; Matsumori M; Okada K; Okita Y
    Eur J Cardiothorac Surg; 2008 Oct; 34(4):798-804. PubMed ID: 18722781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.