These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 21050909)

  • 1. Assessment of inverse agonism for the angiotensin II type 1 receptor.
    Akazawa H; Yasuda N; Miura S; Komuro I
    Methods Enzymol; 2010; 485():25-35. PubMed ID: 21050909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms and functions of agonist-independent activation in the angiotensin II type 1 receptor.
    Akazawa H; Yasuda N; Komuro I
    Mol Cell Endocrinol; 2009 Apr; 302(2):140-7. PubMed ID: 19059460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multivalent ligand-receptor interactions elicit inverse agonist activity of AT(1) receptor blockers against stretch-induced AT(1) receptor activation.
    Qin Y; Yasuda N; Akazawa H; Ito K; Kudo Y; Liao CH; Yamamoto R; Miura S; Saku K; Komuro I
    Hypertens Res; 2009 Oct; 32(10):875-83. PubMed ID: 19662020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanisms underlying angiotensin II-independent activation of angiotensin II type 1 receptor].
    Akazawa H; Komuro I
    Nihon Rinsho; 2012 Sep; 70(9):1492-8. PubMed ID: 23012793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical stress-evoked but angiotensin II-independent activation of angiotensin II type 1 receptor induces cardiac hypertrophy through calcineurin pathway.
    Zhou N; Li L; Wu J; Gong H; Niu Y; Sun A; Ge J; Zou Y
    Biochem Biophys Res Commun; 2010 Jun; 397(2):263-9. PubMed ID: 20580688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel mechanism of mechanical stress-induced angiotensin II type 1-receptor activation without the involvement of angiotensin II.
    Yasuda N; Akazawa H; Qin Y; Zou Y; Komuro I
    Naunyn Schmiedebergs Arch Pharmacol; 2008 Jun; 377(4-6):393-9. PubMed ID: 18046542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of ERK, JNK, Akt, and G-protein coupled signaling by hybrid angiotensin II AT1/bradykinin B2 receptors expressed in HEK-293 cells.
    Yu J; Lubinsky D; Tsomaia N; Huang Z; Taylor L; Mierke D; Navarro J; Miraz O; Polgar P
    J Cell Biochem; 2007 May; 101(1):192-204. PubMed ID: 17212359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human angiotensin AT(1) receptor supports G protein-independent extracellular signal-regulated kinase 1/2 activation and cellular proliferation.
    Hansen JL; Aplin M; Hansen JT; Christensen GL; Bonde MM; Schneider M; Haunsø S; Schiffer HH; Burstein ES; Weiner DM; Sheikh SP
    Eur J Pharmacol; 2008 Aug; 590(1-3):255-63. PubMed ID: 18565507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential extracellular signal-regulated kinases 1 and 2 activation by the angiotensin type 1 receptor supports distinct phenotypes of cardiac myocytes.
    Aplin M; Christensen GL; Schneider M; Heydorn A; Gammeltoft S; Kjølbye AL; Sheikh SP; Hansen JL
    Basic Clin Pharmacol Toxicol; 2007 May; 100(5):296-301. PubMed ID: 17448114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Angiotensin II type 1 receptor signals through Raf-1 by a protein kinase C-dependent, Ras-independent mechanism.
    Arai H; Escobedo JA
    Mol Pharmacol; 1996 Sep; 50(3):522-8. PubMed ID: 8794890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques for studying inverse agonist activity of antidepressants at recombinant nonedited 5-HT(₂C-INI) receptor and native neuronal 5-HT(₂C) receptors.
    Seimandi M; Bockaert J; Marin P
    Methods Enzymol; 2010; 485():61-79. PubMed ID: 21050911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology.
    Higuchi S; Ohtsu H; Suzuki H; Shirai H; Frank GD; Eguchi S
    Clin Sci (Lond); 2007 Apr; 112(8):417-28. PubMed ID: 17346243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin II induced upregulation of G alpha q/11, phospholipase C beta 3 and extracellular signal-regulated kinase 1/2 via angiotensin II type 1 receptor.
    Bai H; Wu LL; Xing DQ; Liu J; Zhao YL
    Chin Med J (Engl); 2004 Jan; 117(1):88-93. PubMed ID: 14733781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptional activation of c-Fos by constitutively active Galpha(16)QL through a STAT1-dependent pathway.
    Lo RK; Wong YH
    Cell Signal; 2006 Dec; 18(12):2143-53. PubMed ID: 16781847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of inverse agonism in β-adrenoceptors.
    Taira CA; Monczor F; Höcht C
    Methods Enzymol; 2010; 485():37-60. PubMed ID: 21050910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ghrelin receptor: high constitutive activity and methods for developing inverse agonists.
    Els S; Beck-Sickinger AG; Chollet C
    Methods Enzymol; 2010; 485():103-21. PubMed ID: 21050913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy as a vector: the relative prevalence and paucity of inverse agonism.
    Kenakin T
    Mol Pharmacol; 2004 Jan; 65(1):2-11. PubMed ID: 14722230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural requirements for inverse agonism and neutral antagonism of indole-, benzimidazole-, and thienopyrrole-derived histamine H4 receptor ligands.
    Schneider EH; Strasser A; Thurmond RL; Seifert R
    J Pharmacol Exp Ther; 2010 Aug; 334(2):513-21. PubMed ID: 20484153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of inverse agonism of the cannabinoid receptors.
    Fong TM
    Methods Enzymol; 2010; 485():139-45. PubMed ID: 21050915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of angiotensin II-AT1 receptors during statin withdrawal in vascular smooth muscle cells.
    Castejon AM; Zollner E; Tristano AG; Cubeddu LX
    J Cardiovasc Pharmacol; 2007 Dec; 50(6):708-11. PubMed ID: 18091590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.