BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 21051075)

  • 1. Can sediment data be used to predict alkalinity and base cation chemistry of surface waters?
    Begum S; McClean CJ; Cresser MS; Breward N
    Sci Total Environ; 2010 Dec; 409(2):404-11. PubMed ID: 21051075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical re-evaluation of the prediction of alkalinity and base cation chemistry from BGS sediment composition data.
    Begum S; McClean CJ; Cresser MS; Adnan M; Breward N
    Sci Total Environ; 2014 Jun; 482-483():283-93. PubMed ID: 24657578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Gran alkalinity and calcium concentrations in river waters over a national scale using a novel modification to the G-BASH model.
    Cresser MS; Ahmed N; Smart RP; Arowolo T; Calver LJ; Chapman PJ
    Environ Pollut; 2006 Sep; 143(2):361-6. PubMed ID: 16406625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A spatial and seasonal assessment of river water chemistry across North West England.
    Rothwell JJ; Dise NB; Taylor KG; Allott TE; Scholefield P; Davies H; Neal C
    Sci Total Environ; 2010 Jan; 408(4):841-55. PubMed ID: 19926113
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sediment geochemistry of Al, Fe, and P for two historically acidic, oligotrophic Maine lakes.
    Wilson TA; Norton SA; Lake BA; Amirbahman A
    Sci Total Environ; 2008 Oct; 404(2-3):269-75. PubMed ID: 18760448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual effects of lead and zinc mining on freshwater mussels in the Spring River Basin (Kansas, Missouri, and Oklahoma, USA).
    Angelo RT; Cringan MS; Chamberlain DL; Stahl AJ; Haslouer SG; Goodrich CA
    Sci Total Environ; 2007 Oct; 384(1-3):467-96. PubMed ID: 17669474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the steady-state water chemistry model predictions of pre-industrial lake pH with paleolimnological data from northern Sweden.
    Bishop K; Rapp L; Köhler S; Korsman T
    Sci Total Environ; 2008 Dec; 407(1):723-9. PubMed ID: 19004472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Migration and leaching characteristics of base cation: indicating environmental effects on soil alkalinity in a karst area.
    Ma M; Gao Y; Song X; Green SM; Xiong B; Dungait JAJ; Peng T; Quine TA; Wen X; He N
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20899-20910. PubMed ID: 29766422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed.
    Markewitz D; Davidson EA; Figueiredo Rd ; Victoria RL; Krusche AV
    Nature; 2001 Apr; 410(6830):802-5. PubMed ID: 11298445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atmospheric versus lithogenic contribution to the composition of first- and second-order stream waters in Seoul and its vicinity.
    Chae GT; Yun ST; Kim KH; Lee PK; Choi BY
    Environ Int; 2004 Mar; 30(1):73-85. PubMed ID: 14664867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial heterogeneity of the spring flood acid pulse in a boreal stream network.
    Buffam I; Laudon H; Seibert J; Mörth CM; Bishop K
    Sci Total Environ; 2008 Dec; 407(1):708-22. PubMed ID: 18940271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water-sediment interactions for Hyalella azteca exposed to uranium-spiked sediment.
    Alves LC; Borgmann U; Dixon DG
    Aquat Toxicol; 2008 May; 87(3):187-99. PubMed ID: 18358545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal changes and depth wise variations in pit pond hydrochemistry contaminated with industrial effluents with special emphasis on metal distribution in water-sediment system.
    Gupta S; Nayek S; Saha RN
    J Hazard Mater; 2010 Nov; 183(1-3):125-31. PubMed ID: 20674171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, USA.
    Norton SA; Coolidge K; Amirbahman A; Bouchard R; Kopácek J; Reinhardt R
    Sci Total Environ; 2008 Oct; 404(2-3):276-83. PubMed ID: 18440053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasting chemical response to artificial acidification of three acid-sensitive streams in Maine, USA.
    Goss HV; Norton SA
    Sci Total Environ; 2008 Oct; 404(2-3):245-52. PubMed ID: 18440052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riparian zone influence on stream water chemistry at different spatial scales: a GIS-based modelling approach, an example for the Dee, NE Scotland.
    Smart RP; Soulsby C; Cresser MS; Wade AJ; Townend J; Billett MF; Langan S
    Sci Total Environ; 2001 Dec; 280(1-3):173-93. PubMed ID: 11763266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic mobility in contaminated lake sediments.
    Nikolaidis NP; Dobbs GM; Chen J; Lackovic JA
    Environ Pollut; 2004 Jun; 129(3):479-87. PubMed ID: 15016468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources of sediment and phosphorus in stream flow of a highly productive dairy farmed catchment.
    McDowell RW; Wilcock RJ
    J Environ Qual; 2007; 36(2):540-8. PubMed ID: 17332258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground water stratification and delivery of nitrate to an incised stream under varying flow conditions.
    Böhlke JK; O'Connell ME; Prestegaard KL
    J Environ Qual; 2007; 36(3):664-80. PubMed ID: 17412903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.