These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 21051076)

  • 1. Simultaneous abiotic reduction-biotic oxidation in a microbial-MnO2-catalyzed Fenton-like system.
    Howsawkeng J; Teel AL; Hess TF; Crawford RL; Watts RJ
    Sci Total Environ; 2010 Dec; 409(2):439-45. PubMed ID: 21051076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for simultaneous abiotic-biotic oxidations in a microbial-Fenton's system.
    Howsawkeng J; Watts RJ; Washington DL; Teel AL; Hess TF; Crawford RL
    Environ Sci Technol; 2001 Jul; 35(14):2961-6. PubMed ID: 11478249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon isotope effects associated with Fenton-like degradation of toluene: potential for differentiation of abiotic and biotic degradation.
    Ahad JM; Slater GF
    Sci Total Environ; 2008 Aug; 401(1-3):194-8. PubMed ID: 18466958
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oxidation of toluene sorbed on activated carbon in the presence of H(2)O(2) and manganese oxide.
    Do SH; Kong SH
    Water Sci Technol; 2012; 66(11):2349-54. PubMed ID: 23032764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag.
    Tsai TT; Kao CM
    J Hazard Mater; 2009 Oct; 170(1):466-72. PubMed ID: 19450924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical oxidation of cable insulating oil contaminated soil.
    Xu J; Pancras T; Grotenhuis T
    Chemosphere; 2011 Jun; 84(2):272-7. PubMed ID: 21571353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism for the destruction of carbon tetrachloride and chloroform DNAPLs by modified Fenton's reagent.
    Smith BA; Teel AL; Watts RJ
    J Contam Hydrol; 2006 May; 85(3-4):229-46. PubMed ID: 16546290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic characteristics of MnO2 nanostructures for the O2 reduction process.
    Kalubarme RS; Cho MS; Yun KS; Kim TS; Park CJ
    Nanotechnology; 2011 Sep; 22(39):395402. PubMed ID: 21896976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soil organic matter-hydrogen peroxide dynamics in the treatment of contaminated soils and groundwater using catalyzed H2O2 propagations (modified Fenton's reagent).
    Bissey LL; Smith JL; Watts RJ
    Water Res; 2006 Jul; 40(13):2477-84. PubMed ID: 16815526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen peroxide stabilization in one-dimensional flow columns.
    Schmidt JT; Ahmad M; Teel AL; Watts RJ
    J Contam Hydrol; 2011 Sep; 126(1-2):1-7. PubMed ID: 21700356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of polychlorinated biphenyls in two surface soils using catalyzed H₂O₂ propagations.
    Ahmad M; Simon MA; Sherrin A; Tuccillo ME; Ullman JL; Teel AL; Watts RJ
    Chemosphere; 2011 Aug; 84(7):855-62. PubMed ID: 21733547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolorization of methylene blue by delta-MnO2-coated montmorillonite complexes: emphasizing redox reactivity of Mn-oxide coatings.
    Zhu MX; Wang Z; Xu SH; Li T
    J Hazard Mater; 2010 Sep; 181(1-3):57-64. PubMed ID: 20510506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced permanganate in situ chemical oxidation through MnO2 particle stabilization: evaluation in 1-D transport systems.
    Crimi M; Quickel M; Ko S
    J Contam Hydrol; 2009 Feb; 105(1-2):69-79. PubMed ID: 19087896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals.
    Matta R; Hanna K; Chiron S
    Sci Total Environ; 2007 Oct; 385(1-3):242-51. PubMed ID: 17662375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Fenton reaction for the treatment of leachate from composting of different wastes.
    Trujillo D; Font X; Sánchez A
    J Hazard Mater; 2006 Nov; 138(1):201-4. PubMed ID: 16860470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced stability of hydrogen peroxide in the presence of subsurface solids.
    Watts RJ; Finn DD; Cutler LM; Schmidt JT; Teel AL
    J Contam Hydrol; 2007 May; 91(3-4):312-26. PubMed ID: 17196706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide.
    Xue X; Hanna K; Deng N
    J Hazard Mater; 2009 Jul; 166(1):407-14. PubMed ID: 19167810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial degradation of tetrachloromethane: mechanisms and perspectives for bioremediation.
    Penny C; Vuilleumier S; Bringel F
    FEMS Microbiol Ecol; 2010 Nov; 74(2):257-75. PubMed ID: 20695893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly sensitive hydrogen peroxide amperometric sensor based on MnO2-modified vertically aligned multiwalled carbon nanotubes.
    Xu B; Ye ML; Yu YX; Zhang WD
    Anal Chim Acta; 2010 Jul; 674(1):20-6. PubMed ID: 20638494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidation of bisphenol F (BPF) by manganese dioxide.
    Lu Z; Lin K; Gan J
    Environ Pollut; 2011 Oct; 159(10):2546-51. PubMed ID: 21741139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.