BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21051271)

  • 1. Non-linear multivariate modeling of cerebral hemodynamics with autoregressive Support Vector Machines.
    Chacon M; Araya C; Panerai RB
    Med Eng Phys; 2011 Mar; 33(2):180-7. PubMed ID: 21051271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of hypocapnia and the cerebral autoregulatory response on cerebrovascular resistance and apparent zero flow pressure during isoflurane anesthesia.
    McCulloch TJ; Turner MJ
    Anesth Analg; 2009 Apr; 108(4):1284-90. PubMed ID: 19299801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cerebral autoregulation: from models to clinical applications.
    Panerai RB
    Cardiovasc Eng; 2008 Mar; 8(1):42-59. PubMed ID: 18041584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of cerebral blood flow autoregulation in neonates.
    Panerai RB; Kelsall AW; Rennie JM; Evans DH
    IEEE Trans Biomed Eng; 1996 Aug; 43(8):779-88. PubMed ID: 9216150
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wavelet phase synchronization analysis of cerebral blood flow autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):960-8. PubMed ID: 20142164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cerebral hemodynamics during orthostatic stress assessed by nonlinear modeling.
    Mitsis GD; Zhang R; Levine BD; Marmarelis VZ
    J Appl Physiol (1985); 2006 Jul; 101(1):354-66. PubMed ID: 16514006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of hidden state variables of the Intracranial system using constrained nonlinear Kalman filters.
    Hu X; Nenov V; Bergsneider M; Glenn TC; Vespa P; Martin N
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):597-610. PubMed ID: 17405367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebral blood flow velocity during mental activation: interpretation with different models of the passive pressure-velocity relationship.
    Panerai RB; Moody M; Eames PJ; Potter JF
    J Appl Physiol (1985); 2005 Dec; 99(6):2352-62. PubMed ID: 16099892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlations among critical closing pressure, pulsatility index and cerebrovascular resistance.
    Hsu HY; Chern CM; Kuo JS; Kuo TB; Chen YT; Hu HH
    Ultrasound Med Biol; 2004 Oct; 30(10):1329-35. PubMed ID: 15582232
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexity of the human cerebral circulation.
    Panerai RB
    Philos Trans A Math Phys Eng Sci; 2009 Apr; 367(1892):1319-36. PubMed ID: 19324711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-linear models for the detection of impaired cerebral blood flow autoregulation.
    Chacón M; Jara JL; Miranda R; Katsogridakis E; Panerai RB
    PLoS One; 2018; 13(1):e0191825. PubMed ID: 29381724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans.
    Mitsis GD; Poulin MJ; Robbins PA; Marmarelis VZ
    IEEE Trans Biomed Eng; 2004 Nov; 51(11):1932-43. PubMed ID: 15536895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrovascular reactivity and cerebral autoregulation in normal subjects.
    Carrera E; Lee LK; Giannopoulos S; Marshall RS
    J Neurol Sci; 2009 Oct; 285(1-2):191-4. PubMed ID: 19608202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multivariate system identification for cerebral autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    Ann Biomed Eng; 2008 Feb; 36(2):308-20. PubMed ID: 18066666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral haemodynamics in infants during cardiopulmonary bypass.
    Taylor RH; Burrows FA; Bissonnette B
    Can J Anaesth; 1990 May; 37(4 Pt 2):S153. PubMed ID: 2113837
    [No Abstract]   [Full Text] [Related]  

  • 16. A model of the interaction between autoregulation and neural activation in the brain.
    Payne SJ
    Math Biosci; 2006 Dec; 204(2):260-81. PubMed ID: 17010387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contribution of arterial blood pressure and PaCO2 to the cerebrovascular responses to motor stimulation.
    Panerai RB; Salinet AS; Robinson TG
    Am J Physiol Heart Circ Physiol; 2012 Jan; 302(2):H459-66. PubMed ID: 22058160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unconstrained parameter estimation for assessment of dynamic cerebral autoregulation.
    Chacón M; Nuñez N; Henríquez C; Panerai RB
    Physiol Meas; 2008 Oct; 29(10):1179-93. PubMed ID: 18799835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The relationship between cerebral blood flow (CBF) and the cerebral blood flow velocity (CBFV): Influence of halothane and cerebral CO2 reactivity].
    Grüne F; Buhre W; Kazmaier S; Weyland W; Rieke H; Weyland A
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2001 Sep; 36(9):538-44. PubMed ID: 11577352
    [No Abstract]   [Full Text] [Related]  

  • 20. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI).
    Lewis PM; Rosenfeld JV; Diehl RR; Mehdorn HM; Lang EW
    Acta Neurochir (Wien); 2008 Feb; 150(2):139-46; discussion 146-7. PubMed ID: 18213440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.