BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21051332)

  • 1. Lack of WDR36 leads to preimplantation embryonic lethality in mice and delays the formation of small subunit ribosomal RNA in human cells in vitro.
    Gallenberger M; Meinel DM; Kroeber M; Wegner M; Milkereit P; Bösl MR; Tamm ER
    Hum Mol Genet; 2011 Feb; 20(3):422-35. PubMed ID: 21051332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glaucoma-associated WDR36 variants encode functional defects in a yeast model system.
    Footz TK; Johnson JL; Dubois S; Boivin N; Raymond V; Walter MA
    Hum Mol Genet; 2009 Apr; 18(7):1276-87. PubMed ID: 19150991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a novel adult-onset primary open-angle glaucoma (POAG) gene on 5q22.1.
    Monemi S; Spaeth G; DaSilva A; Popinchalk S; Ilitchev E; Liebmann J; Ritch R; Héon E; Crick RP; Child A; Sarfarazi M
    Hum Mol Genet; 2005 Mar; 14(6):725-33. PubMed ID: 15677485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The primary open-angle glaucoma gene WDR36 functions in ribosomal RNA processing and interacts with the p53 stress-response pathway.
    Skarie JM; Link BA
    Hum Mol Genet; 2008 Aug; 17(16):2474-85. PubMed ID: 18469340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implication of nucleolar protein SURF6 in ribosome biogenesis and preimplantation mouse development.
    Romanova LG; Anger M; Zatsepina OV; Schultz RM
    Biol Reprod; 2006 Nov; 75(5):690-6. PubMed ID: 16855206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heterozygote Wdr36-deficient mice do not develop glaucoma.
    Gallenberger M; Kroeber M; März L; Koch M; Fuchshofer R; Braunger BM; Iwata T; Tamm ER
    Exp Eye Res; 2014 Nov; 128():83-91. PubMed ID: 25261604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-variation of STI1 and WDR36/UTP21 alters cell proliferation in a glaucoma model.
    Footz T; Dubois S; Sarfarazi M; Raymond V; Walter MA
    Mol Vis; 2011; 17():1957-69. PubMed ID: 21850170
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of BIRC6 leads to retarded bovine early embryonic development and blastocyst formation in vitro.
    Salilew-Wondim D; Hölker M; Rings F; Phatsara C; Mohammadi-Sangcheshmeh A; Tholen E; Schellander K; Tesfaye D
    Reprod Fertil Dev; 2010; 22(3):564-79. PubMed ID: 20188030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rcl1p, the yeast protein similar to the RNA 3'-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis.
    Billy E; Wegierski T; Nasr F; Filipowicz W
    EMBO J; 2000 May; 19(9):2115-26. PubMed ID: 10790377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RRP5 is required for formation of both 18S and 5.8S rRNA in yeast.
    Venema J; Tollervey D
    EMBO J; 1996 Oct; 15(20):5701-14. PubMed ID: 8896463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RBD-1, a nucleolar RNA-binding protein, is essential for Caenorhabditis elegans early development through 18S ribosomal RNA processing.
    Saijou E; Fujiwara T; Suzaki T; Inoue K; Sakamoto H
    Nucleic Acids Res; 2004; 32(3):1028-36. PubMed ID: 14872060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. U3 small nucleolar RNA is essential for cleavage at sites 1, 2 and 3 in pre-rRNA and determines which rRNA processing pathway is taken in Xenopus oocytes.
    Borovjagin AV; Gerbi SA
    J Mol Biol; 1999 Mar; 286(5):1347-63. PubMed ID: 10064702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct interaction between Utp8p and Utp9p contributes to rRNA processing in budding yeast.
    Huang YC; Tseng SF; Tsai HJ; Lenzmeier BA; Teng SC
    Biochem Biophys Res Commun; 2010 Mar; 393(2):297-302. PubMed ID: 20138832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig.
    Maddox-Hyttel P; Svarcova O; Laurincik J
    Theriogenology; 2007 Sep; 68 Suppl 1():S63-70. PubMed ID: 17466364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5'ETS rRNA processing facilitated by four small RNAs: U14, E3, U17, and U3.
    Enright CA; Maxwell ES; Eliceiri GL; Sollner-Webb B
    RNA; 1996 Nov; 2(11):1094-9. PubMed ID: 8903340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Esf2p, a U3-associated factor required for small-subunit processome assembly and compaction.
    Hoang T; Peng WT; Vanrobays E; Krogan N; Hiley S; Beyer AL; Osheim YN; Greenblatt J; Hughes TR; Lafontaine DL
    Mol Cell Biol; 2005 Jul; 25(13):5523-34. PubMed ID: 15964808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleolar localization of aprataxin is dependent on interaction with nucleolin and on active ribosomal DNA transcription.
    Becherel OJ; Gueven N; Birrell GW; Schreiber V; Suraweera A; Jakob B; Taucher-Scholz G; Lavin MF
    Hum Mol Genet; 2006 Jul; 15(14):2239-49. PubMed ID: 16777843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of nucleolar-related proteins in porcine preimplantation embryos produced in vivo and in vitro.
    Bjerregaard B; Wrenzycki C; Strejcek F; Laurincik J; Holm P; Ochs RL; Rosenkranz C; Callesen H; Rath D; Niemann H; Maddox-Hyttel P
    Biol Reprod; 2004 Apr; 70(4):867-76. PubMed ID: 14585813
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Processing of 20S pre-rRNA to 18S ribosomal RNA in yeast requires Rrp10p, an essential non-ribosomal cytoplasmic protein.
    Vanrobays E; Gleizes PE; Bousquet-Antonelli C; Noaillac-Depeyre J; Caizergues-Ferrer M; Gélugne JP
    EMBO J; 2001 Aug; 20(15):4204-13. PubMed ID: 11483523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The KRR1 gene encodes a protein required for 18S rRNA synthesis and 40S ribosomal subunit assembly in Saccharomyces cerevisiae.
    Gromadka R; Rytka J
    Acta Biochim Pol; 2000; 47(4):993-1005. PubMed ID: 11996121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.