These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21051340)

  • 1. Use of structural DNA properties for the prediction of transcription-factor binding sites in Escherichia coli.
    Meysman P; Dang TH; Laukens K; De Smet R; Wu Y; Marchal K; Engelen K
    Nucleic Acids Res; 2011 Jan; 39(2):e6. PubMed ID: 21051340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA.
    Li Z; Demple B
    J Biol Chem; 1994 Jul; 269(28):18371-7. PubMed ID: 8034583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using sequence-specific chemical and structural properties of DNA to predict transcription factor binding sites.
    Bauer AL; Hlavacek WS; Unkefer PJ; Mu F
    PLoS Comput Biol; 2010 Nov; 6(11):e1001007. PubMed ID: 21124945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation.
    Griffith KL; Wolf RE
    Mol Microbiol; 2001 Jun; 40(5):1141-54. PubMed ID: 11401718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational model for binding site recognition by the E.coli MetJ transcription factor.
    Liu R; Blackwell TW; States DJ
    Bioinformatics; 2001 Jul; 17(7):622-33. PubMed ID: 11448880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biophysical approach to transcription factor binding site discovery.
    Djordjevic M; Sengupta AM; Shraiman BI
    Genome Res; 2003 Nov; 13(11):2381-90. PubMed ID: 14597652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription factor distribution in Escherichia coli: studies with FNR protein.
    Grainger DC; Aiba H; Hurd D; Browning DF; Busby SJ
    Nucleic Acids Res; 2007; 35(1):269-78. PubMed ID: 17164287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and Functional Insights into the Regulation of d-Galactonate Metabolism by the Transcriptional Regulator DgoR in
    Singh B; Arya G; Kundu N; Sangwan A; Nongthombam S; Chaba R
    J Bacteriol; 2019 Feb; 201(4):. PubMed ID: 30455279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring comprehensive within-motif dependence of transcription factor binding in Escherichia coli.
    Yang C; Chang CH
    Sci Rep; 2015 Nov; 5():17021. PubMed ID: 26592556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two MalT binding sites in direct repeat. A structural motif involved in the activation of all the promoters of the maltose regulons in Escherichia coli and Klebsiella pneumoniae.
    Vidal-Ingigliardi D; Richet E; Raibaud O
    J Mol Biol; 1991 Mar; 218(2):323-34. PubMed ID: 2010912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA loop formation between Nag repressor molecules bound to its two operator sites is necessary for repression of the nag regulon of Escherichia coli in vivo.
    Plumbridge J; Kolb A
    Mol Microbiol; 1993 Dec; 10(5):973-81. PubMed ID: 7934873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread Strain-Specific Distinctions in Chromosomal Binding Dynamics of a Highly Conserved Escherichia coli Transcription Factor.
    Connolly JPR; O'Boyle N; Roe AJ
    mBio; 2020 Jun; 11(3):. PubMed ID: 32576674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA.
    Kwon HJ; Bennik MH; Demple B; Ellenberger T
    Nat Struct Biol; 2000 May; 7(5):424-30. PubMed ID: 10802742
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the Escherichia coli transcriptional activator MarA using alanine-scanning mutagenesis: residues important for DNA binding and activation.
    Gillette WK; Martin RG; Rosner JL
    J Mol Biol; 2000 Jun; 299(5):1245-55. PubMed ID: 10873449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion of neighboring base interdependencies substantially improves genome-wide prokaryotic transcription factor binding site prediction.
    Salama RA; Stekel DJ
    Nucleic Acids Res; 2010 Jul; 38(12):e135. PubMed ID: 20439311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of methods for representing and searching for transcription factor binding sites.
    Osada R; Zaslavsky E; Singh M
    Bioinformatics; 2004 Dec; 20(18):3516-25. PubMed ID: 15297295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of thresholds for the detection of binding sites for regulatory proteins in Escherichia coli K12 DNA.
    Benítez-Bellón E; Moreno-Hagelsieb G; Collado-Vides J
    Genome Biol; 2002; 3(3):RESEARCH0013. PubMed ID: 11897025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution.
    Suvorova IA; Korostelev YD; Gelfand MS
    PLoS One; 2015; 10(7):e0132618. PubMed ID: 26151451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of common motifs in unaligned DNA sequences: application to Escherichia coli Lrp regulon.
    Fraenkel YM; Mandel Y; Friedberg D; Margalit H
    Comput Appl Biosci; 1995 Aug; 11(4):379-87. PubMed ID: 8521047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors.
    Meng X; Brodsky MH; Wolfe SA
    Nat Biotechnol; 2005 Aug; 23(8):988-94. PubMed ID: 16041365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.