BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 21051861)

  • 1. Smaddening complexity: the role of Smad3 in epithelial-myofibroblast transition.
    Masszi A; Kapus A
    Cells Tissues Organs; 2011; 193(1-2):41-52. PubMed ID: 21051861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smad3 linker phosphorylation attenuates Smad3 transcriptional activity and TGF-β1/Smad3-induced epithelial-mesenchymal transition in renal epithelial cells.
    Bae E; Kim SJ; Hong S; Liu F; Ooshima A
    Biochem Biophys Res Commun; 2012 Oct; 427(3):593-9. PubMed ID: 23022526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells.
    Patel P; West-Mays J; Kolb M; Rodrigues JC; Hoff CM; Margetts PJ
    Matrix Biol; 2010 Mar; 29(2):97-106. PubMed ID: 19896531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct contribution of epithelium to organ fibrosis: epithelial-mesenchymal transition.
    Guarino M; Tosoni A; Nebuloni M
    Hum Pathol; 2009 Oct; 40(10):1365-76. PubMed ID: 19695676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rho activation is required for transforming growth factor-beta-induced epithelial-mesenchymal transition in lens epithelial cells.
    Cho HJ; Yoo J
    Cell Biol Int; 2007 Oct; 31(10):1225-30. PubMed ID: 17537651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human peritoneal mesothelial cell transformation into myofibroblasts in response to TGF-ß1 in vitro.
    Lv ZD; Na D; Ma XY; Zhao C; Zhao WJ; Xu HM
    Int J Mol Med; 2011 Feb; 27(2):187-93. PubMed ID: 21152863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential topical susceptibility to TGFβ in intact and injured regions of the epithelium: key role in myofibroblast transition.
    Speight P; Nakano H; Kelley TJ; Hinz B; Kapus A
    Mol Biol Cell; 2013 Nov; 24(21):3326-36. PubMed ID: 24006486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. β-catenin and Smad3 regulate the activity and stability of myocardin-related transcription factor during epithelial-myofibroblast transition.
    Charbonney E; Speight P; Masszi A; Nakano H; Kapus A
    Mol Biol Cell; 2011 Dec; 22(23):4472-85. PubMed ID: 21965288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of TGF-beta/Smad signaling pathway on lung myofibroblast differentiation.
    Gu L; Zhu YJ; Yang X; Guo ZJ; Xu WB; Tian XL
    Acta Pharmacol Sin; 2007 Mar; 28(3):382-91. PubMed ID: 17303001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate-determining mechanisms in epithelial-myofibroblast transition: major inhibitory role for Smad3.
    Masszi A; Speight P; Charbonney E; Lodyga M; Nakano H; Szászi K; Kapus A
    J Cell Biol; 2010 Feb; 188(3):383-99. PubMed ID: 20123992
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LIM-domain proteins in transforming growth factor β-induced epithelial-to-mesenchymal transition and myofibroblast differentiation.
    Järvinen PM; Laiho M
    Cell Signal; 2012 Apr; 24(4):819-25. PubMed ID: 22182513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular mediators of type 2 epithelial to mesenchymal transition (EMT) and their role in renal pathophysiology.
    Burns WC; Thomas MC
    Expert Rev Mol Med; 2010 May; 12():e17. PubMed ID: 20504380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT).
    Kasai H; Allen JT; Mason RM; Kamimura T; Zhang Z
    Respir Res; 2005 Jun; 6(1):56. PubMed ID: 15946381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smad3 is a key nonredundant mediator of transforming growth factor beta signaling in Nme mouse mammary epithelial cells.
    Dzwonek J; Preobrazhenska O; Cazzola S; Conidi A; Schellens A; van Dinther M; Stubbs A; Klippel A; Huylebroeck D; ten Dijke P; Verschueren K
    Mol Cancer Res; 2009 Aug; 7(8):1342-53. PubMed ID: 19671686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smad3 is key to TGF-beta-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis.
    Roberts AB; Tian F; Byfield SD; Stuelten C; Ooshima A; Saika S; Flanders KC
    Cytokine Growth Factor Rev; 2006; 17(1-2):19-27. PubMed ID: 16290023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype.
    Bagchi RA; Roche P; Aroutiounova N; Espira L; Abrenica B; Schweitzer R; Czubryt MP
    BMC Biol; 2016 Mar; 14():21. PubMed ID: 26988708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulators and mediators of radiation-induced fibrosis: Gene expression profiles and a rationale for Smad3 inhibition.
    Lee JW; Zoumalan RA; Valenzuela CD; Nguyen PD; Tutela JP; Roman BR; Warren SM; Saadeh PB
    Otolaryngol Head Neck Surg; 2010 Oct; 143(4):525-30. PubMed ID: 20869563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted disruption of Smad3 confers resistance to the development of dimethylnitrosamine-induced hepatic fibrosis in mice.
    Latella G; Vetuschi A; Sferra R; Catitti V; D'Angelo A; Zanninelli G; Flanders KC; Gaudio E
    Liver Int; 2009 Aug; 29(7):997-1009. PubMed ID: 19422482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A tale of two proteins: differential roles and regulation of Smad2 and Smad3 in TGF-beta signaling.
    Brown KA; Pietenpol JA; Moses HL
    J Cell Biochem; 2007 May; 101(1):9-33. PubMed ID: 17340614
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The mechanism of transforming growth factor beta1 in myofibroblast differentiation].
    Liu HX; Wang SW; Zhao CH; Liu Y; Li Y; Zhang QG; Cong W; Lan XG; Xu S; Han LB; Zhang L
    Zhonghua Wai Ke Za Zhi; 2007 Jul; 45(14):986-9. PubMed ID: 17961388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.