BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21051877)

  • 21. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).
    Eastman JT; Lannoo MJ
    J Morphol; 2004 Apr; 260(1):117-40. PubMed ID: 15052601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina.
    Zhang J; Yang Z; Wu SM
    J Comp Neurol; 2005 Apr; 484(3):331-43. PubMed ID: 15739235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual sensitivity in the crepuscular owl butterfly Caligo memnon and the diurnal blue morpho Morpho peleides: a clue to explain the evolution of nocturnal apposition eyes?
    Frederiksen R; Warrant EJ
    J Exp Biol; 2008 Mar; 211(Pt 6):844-51. PubMed ID: 18310109
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive features of aquatic mammals' eye.
    Mass AM; Supin AY
    Anat Rec (Hoboken); 2007 Jun; 290(6):701-15. PubMed ID: 17516421
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vision in the southern hemisphere lamprey Mordacia mordax: spatial distribution, spectral absorption characteristics, and optical sensitivity of a single class of retinal photoreceptor.
    Collin SP; Hart NS; Wallace KM; Shand J; Potter IC
    Vis Neurosci; 2004; 21(5):765-73. PubMed ID: 15683562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eye Morphology and Retinal Topography in Hummingbirds (Trochilidae: Aves).
    Lisney TJ; Wylie DR; Kolominsky J; Iwaniuk AN
    Brain Behav Evol; 2015; 86(3-4):176-90. PubMed ID: 26587582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photon hunting in the twilight zone: visual features of mesopelagic bioluminescent sharks.
    Claes JM; Partridge JC; Hart NS; Garza-Gisholt E; Ho HC; Mallefet J; Collin SP
    PLoS One; 2014; 9(8):e104213. PubMed ID: 25099504
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Foveate vision in deep-sea teleosts: a comparison of primary visual and olfactory inputs.
    Collin SP; Lloyd DJ; Wagner HJ
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1315-20. PubMed ID: 11079422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The topography of primate retina: a study of the human, bushbaby, and new- and old-world monkeys.
    Stone J; Johnston E
    J Comp Neurol; 1981 Feb; 196(2):205-23. PubMed ID: 7217355
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual eyes: a quantitative analysis of the photoreceptor layer in deep-sea sharks.
    Newman AS; Marshall JN; Collin SP
    Brain Behav Evol; 2013; 82(4):237-49. PubMed ID: 24280649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A recent shark radiation: molecular phylogeny, biogeography and speciation of wobbegong sharks (family: Orectolobidae).
    Corrigan S; Beheregaray LB
    Mol Phylogenet Evol; 2009 Jul; 52(1):205-16. PubMed ID: 19303452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoreceptor and ganglion cell topographies correlate with information convergence and high acuity regions in the adult pigeon (Columba livia) retina.
    Querubin A; Lee HR; Provis JM; O'Brien KM
    J Comp Neurol; 2009 Dec; 517(5):711-22. PubMed ID: 19827162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Asymmetry in the structural organization of the ganglion layer of the retina in the frog].
    Kalinina AV; Zhukov VA; Prakhova NV
    Neirofiziologiia; 1985; 17(2):198-204. PubMed ID: 3873621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relative eye size in elasmobranchs.
    Lisney TJ; Collin SP
    Brain Behav Evol; 2007; 69(4):266-79. PubMed ID: 17314474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural changes to the uterus of the dwarf ornate wobbegong shark (Orectolobus ornatus) during pregnancy.
    Buddle AL; Otway NM; Van Dyke JU; Thompson MB; Murphy CR; Dowland SN; Simpfendorfer CA; Ellis MT; Whittington CM
    J Morphol; 2020 Apr; 281(4-5):428-437. PubMed ID: 32031746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retinal ganglion cell topography and spatial resolving power in the river hippopotamus (Hippopotamus amphibius).
    Coimbra JP; Bertelsen MF; Manger PR
    J Comp Neurol; 2017 Aug; 525(11):2499-2513. PubMed ID: 28139828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative study of photoreceptor and retinal ganglion cell topography and spatial resolving power in Dipsadidae snakes.
    Hauzman E; Bonci DM; Grotzner SR; Mela M; Liber AM; Martins SL; Ventura DF
    Brain Behav Evol; 2014; 84(3):197-213. PubMed ID: 25342570
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual Specializations in Five Sympatric Species of Stingrays from the Family Dasyatidae.
    Garza-Gisholt E; Kempster RM; Hart NS; Collin SP
    Brain Behav Evol; 2015; 85(4):217-32. PubMed ID: 26183463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retinal photoreceptors of two subterranean tuco-tuco species (Rodentia, Ctenomys): morphology, topography, and spectral sensitivity.
    Schleich CE; Vielma A; Glösmann M; Palacios AG; Peichl L
    J Comp Neurol; 2010 Oct; 518(19):4001-15. PubMed ID: 20737597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Retinal ganglion cell topography and spatial resolving power in the white rhinoceros (Ceratotherium simum).
    Coimbra JP; Manger PR
    J Comp Neurol; 2017 Aug; 525(11):2484-2498. PubMed ID: 27804143
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.