BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 21052008)

  • 21. Propensity Score Weighting and Trimming Strategies for Reducing Variance and Bias of Treatment Effect Estimates: A Simulation Study.
    Stürmer T; Webster-Clark M; Lund JL; Wyss R; Ellis AR; Lunt M; Rothman KJ; Glynn RJ
    Am J Epidemiol; 2021 Aug; 190(8):1659-1670. PubMed ID: 33615349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unifying instrumental variable and inverse probability weighting approaches for inference of causal treatment effect and unmeasured confounding in observational studies.
    Liu T; Hogan JW
    Stat Methods Med Res; 2021 Mar; 30(3):671-686. PubMed ID: 33213292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitivity analysis for interactions under unmeasured confounding.
    Vanderweele TJ; Mukherjee B; Chen J
    Stat Med; 2012 Sep; 31(22):2552-64. PubMed ID: 21976358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Confounder adjustment in observational comparative effectiveness researches: (2) statistical adjustment approaches for unmeasured confounders].
    Huang LL; Wei YY; Chen F
    Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1450-1455. PubMed ID: 31838820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validity evaluation of indirect adjustment method for multiple unmeasured confounders: A simulation and empirical study.
    Byun G; Kim H; Kim SY; Kim SS; Oh H; Lee JT
    Environ Res; 2022 Mar; 204(Pt A):111992. PubMed ID: 34487697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bespoke Instruments: A new tool for addressing unmeasured confounders.
    Richardson DB; Tchetgen Tchetgen EJ
    Am J Epidemiol; 2022 Mar; 191(5):939-947. PubMed ID: 34907434
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inclusion of binary proxy variables in logistic regression improves treatment effect estimation in observational studies in the presence of binary unmeasured confounding variables.
    Rosenbaum C; Yu Q; Buzhardt S; Sutton E; Chapple AG
    Pharm Stat; 2023; 22(6):995-1015. PubMed ID: 37986712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Summarizing causal differences in survival curves in the presence of unmeasured confounding.
    Martínez-Camblor P; MacKenzie TA; Staiger DO; Goodney PP; O'Malley AJ
    Int J Biostat; 2020 Sep; 17(2):223-240. PubMed ID: 32946418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Causal directed acyclic graphs and the direction of unmeasured confounding bias.
    VanderWeele TJ; Hernán MA; Robins JM
    Epidemiology; 2008 Sep; 19(5):720-8. PubMed ID: 18633331
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensitivity analysis for unmeasured confounding in principal stratification settings with binary variables.
    Schwartz S; Li F; Reiter JP
    Stat Med; 2012 May; 31(10):949-62. PubMed ID: 22362635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing causal treatment effect estimation when using large observational datasets.
    John ER; Abrams KR; Brightling CE; Sheehan NA
    BMC Med Res Methodol; 2019 Nov; 19(1):207. PubMed ID: 31726969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A flexible, interpretable framework for assessing sensitivity to unmeasured confounding.
    Dorie V; Harada M; Carnegie NB; Hill J
    Stat Med; 2016 Sep; 35(20):3453-70. PubMed ID: 27139250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The control outcome calibration approach for causal inference with unobserved confounding.
    Tchetgen Tchetgen E
    Am J Epidemiol; 2014 Mar; 179(5):633-40. PubMed ID: 24363326
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative bias analysis in practice: review of software for regression with unmeasured confounding.
    Kawabata E; Tilling K; Groenwold RHH; Hughes RA
    BMC Med Res Methodol; 2023 May; 23(1):111. PubMed ID: 37142961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bias factor, maximum bias and the E-value: insight and extended applications.
    Cusson A; Infante-Rivard C
    Int J Epidemiol; 2020 Oct; 49(5):1509-1516. PubMed ID: 32995847
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity Analysis Without Assumptions.
    Ding P; VanderWeele TJ
    Epidemiology; 2016 May; 27(3):368-77. PubMed ID: 26841057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bayesian sensitivity analysis for unmeasured confounding in causal mediation analysis.
    McCandless LC; Somers JM
    Stat Methods Med Res; 2019 Feb; 28(2):515-531. PubMed ID: 28882092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A comparison of methods to estimate the survivor average causal effect in the presence of missing data: a simulation study.
    McGuinness MB; Kasza J; Karahalios A; Guymer RH; Finger RP; Simpson JA
    BMC Med Res Methodol; 2019 Dec; 19(1):223. PubMed ID: 31795945
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.