BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 21052008)

  • 41. Sensitivity Analysis Without Assumptions.
    Ding P; VanderWeele TJ
    Epidemiology; 2016 May; 27(3):368-77. PubMed ID: 26841057
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adjusting for bias and unmeasured confounding in Mendelian randomization studies with binary responses.
    Palmer TM; Thompson JR; Tobin MD; Sheehan NA; Burton PR
    Int J Epidemiol; 2008 Oct; 37(5):1161-8. PubMed ID: 18463132
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding.
    McCandless LC; Gustafson P
    Stat Med; 2017 Aug; 36(18):2887-2901. PubMed ID: 28386994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple-bias Sensitivity Analysis Using Bounds.
    Smith LH; Mathur MB; VanderWeele TJ
    Epidemiology; 2021 Sep; 32(5):625-634. PubMed ID: 34224471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Treatment effects in the presence of unmeasured confounding: dealing with observations in the tails of the propensity score distribution--a simulation study.
    Stürmer T; Rothman KJ; Avorn J; Glynn RJ
    Am J Epidemiol; 2010 Oct; 172(7):843-54. PubMed ID: 20716704
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A FLEXIBLE SENSITIVITY ANALYSIS APPROACH FOR UNMEASURED CONFOUNDING WITH MULTIPLE TREATMENTS AND A BINARY OUTCOME WITH APPLICATION TO SEER-MEDICARE LUNG CANCER DATA.
    Hu L; Zou J; Gu C; Ji J; Lopez M; Kale M
    Ann Appl Stat; 2022 Jun; 16(2):1014-1037. PubMed ID: 36644682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Negative control exposure studies in the presence of measurement error: implications for attempted effect estimate calibration.
    Sanderson E; Macdonald-Wallis C; Davey Smith G
    Int J Epidemiol; 2018 Apr; 47(2):587-596. PubMed ID: 29088358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Fixed effects analysis of repeated measures data.
    Gunasekara FI; Richardson K; Carter K; Blakely T
    Int J Epidemiol; 2014 Feb; 43(1):264-9. PubMed ID: 24366487
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Causal Modeling to Mitigate Selection Bias and Unmeasured Confounding in Internet-Based Epidemiology of COVID-19: Model Development and Validation.
    Stockham N; Washington P; Chrisman B; Paskov K; Jung JY; Wall DP
    JMIR Public Health Surveill; 2022 Jul; 8(7):e31306. PubMed ID: 35605128
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing mediation using marginal structural models in the presence of confounding and moderation.
    Coffman DL; Zhong W
    Psychol Methods; 2012 Dec; 17(4):642-64. PubMed ID: 22905648
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Impact of Nondifferential Exposure Misclassification on the Performance of Propensity Scores for Continuous and Binary Outcomes: A Simulation Study.
    Wood ME; Chrysanthopoulou S; Nordeng HME; Lapane KL
    Med Care; 2018 Aug; 56(8):e46-e53. PubMed ID: 28922298
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two-stage instrumental variable methods for estimating the causal odds ratio: analysis of bias.
    Cai B; Small DS; Have TR
    Stat Med; 2011 Jul; 30(15):1809-24. PubMed ID: 21495062
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adjustment for time-dependent unmeasured confounders in marginal structural Cox models using validation sample data.
    Burne RM; Abrahamowicz M
    Stat Methods Med Res; 2019 Feb; 28(2):357-371. PubMed ID: 28835193
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prior event rate ratio adjustment: numerical studies of a statistical method to address unrecognized confounding in observational studies.
    Yu M; Xie D; Wang X; Weiner MG; Tannen RL
    Pharmacoepidemiol Drug Saf; 2012 May; 21 Suppl 2():60-8. PubMed ID: 22552981
    [TBL] [Abstract][Full Text] [Related]  

  • 55. SAS and R code for probabilistic quantitative bias analysis for misclassified binary variables and binary unmeasured confounders.
    Fox MP; MacLehose RF; Lash TL
    Int J Epidemiol; 2023 Oct; 52(5):1624-1633. PubMed ID: 37141446
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Confounding and regression adjustment in difference-in-differences studies.
    Zeldow B; Hatfield LA
    Health Serv Res; 2021 Oct; 56(5):932-941. PubMed ID: 33978956
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bounding the bias of unmeasured factors with confounding and effect-modifying potentials.
    Lee WC
    Stat Med; 2011 Apr; 30(9):1007-17. PubMed ID: 21472760
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robust Machine Learning for Treatment Effects in Multilevel Observational Studies Under Cluster-level Unmeasured Confounding.
    Suk Y; Kang H
    Psychometrika; 2022 Mar; 87(1):310-343. PubMed ID: 34652613
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acetaminophen use during pregnancy and the risk of attention deficit hyperactivity disorder: A causal association or bias?
    Masarwa R; Platt RW; Filion KB
    Paediatr Perinat Epidemiol; 2020 May; 34(3):309-317. PubMed ID: 31916282
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Controlling for continuous confounders in epidemiologic research.
    Brenner H; Blettner M
    Epidemiology; 1997 Jul; 8(4):429-34. PubMed ID: 9209859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.