These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 21052244)

  • 1. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the performance of a shearing interferometer in strong scintillation in the absence of additive measurement noise.
    Barchers JD; Fried DL; Link DJ
    Appl Opt; 2002 Jun; 41(18):3674-84. PubMed ID: 12078695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance analysis of the self-referenced speckle-holography image-reconstruction technique.
    Welsh BM; Vonniederhausern RN
    Appl Opt; 1993 Sep; 32(26):5071-8. PubMed ID: 20856312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Processing wave-front-sensor slope measurements using artificial neural networks.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Jul; 35(21):4238-51. PubMed ID: 21102833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of artificial neural networks for Hartmann-sensor lenslet centroid estimation.
    Montera DA; Welsh BM; Roggemann MC; Ruck DW
    Appl Opt; 1996 Oct; 35(29):5747-57. PubMed ID: 21127584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements.
    Li Z; Li X
    Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications.
    Koch JA; Presta RW; Sacks RA; Zacharias RA; Bliss ES; Dailey MJ; Feldman M; Grey AA; Holdener FR; Salmon JT; Seppala LG; Toeppen JS; Van Atta L; Van Wonterghem BM; Whistler WT; Winters SE; Woods BW
    Appl Opt; 2000 Sep; 39(25):4540-6. PubMed ID: 18350042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave-front sensing by pseudo-phase-conjugate interferometry.
    Baharav Y; Spektor B; Shamir J; Crowe DG; Rhodes W; Stroud R
    Appl Opt; 1995 Jan; 34(1):108-13. PubMed ID: 20963089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared Shack-Hartmann wavefront sensor fully cryogenic using extended source for endoatmospheric applications.
    Robert C; Michau V; Fleury B; Magli S; Vial L
    Opt Express; 2012 Jul; 20(14):15636-53. PubMed ID: 22772257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Widening the effective field of view of adaptive-optics telescopes by deconvolution from wave-front sensing: average and signal-to-noise ratio performance.
    Roggemann MC; Ellerbroek BL; Rhoadarmer TA
    Appl Opt; 1995 Mar; 34(8):1432-44. PubMed ID: 21037680
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging performance analysis of adaptive optical telescopes using laser guide stars.
    Welsh BM
    Appl Opt; 1991 Dec; 30(34):5021-30. PubMed ID: 20717316
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the plenoptic sensor and the Shack-Hartmann sensor.
    Ko J; Davis CC
    Appl Opt; 2017 May; 56(13):3689-3698. PubMed ID: 28463253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited degree-of-freedom adaptive optics and image reconstruction.
    Roggemann MC
    Appl Opt; 1991 Oct; 30(29):4227-33. PubMed ID: 20706528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive optics with four laser guide stars: correction of the cone effect in large telescopes.
    Viard E; Le LM; Hubin N
    Appl Opt; 2002 Jan; 41(1):11-20. PubMed ID: 11900425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptable Shack-Hartmann wavefront sensor with diffractive lenslet arrays to mitigate the effects of scintillation.
    Lechner D; Zepp A; Eichhorn M; Gładysz S
    Opt Express; 2020 Nov; 28(24):36188-36205. PubMed ID: 33379719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the performance of Hartmann sensors in strong scintillation.
    Barchers JD; Fried DL; Link DJ
    Appl Opt; 2002 Feb; 41(6):1012-21. PubMed ID: 11900119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of curvature-based and Shack-Hartmann-based adaptive optics for the Gemini telescope.
    Rigaut F; Ellerbroek BL; Northcott MJ
    Appl Opt; 1997 May; 36(13):2856-68. PubMed ID: 18253284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signal-to-noise ratio for astronomical imaging by deconvolution from wave-front sensing.
    Roggemann MC; Welsh BM
    Appl Opt; 1994 Aug; 33(23):5400-14. PubMed ID: 20935931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.